cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203470 a(n) = Product_{2 <= i < j <= n+1} (i + j).

Original entry on oeis.org

1, 5, 210, 105840, 838252800, 129459762432000, 466521199899955200000, 45727437650097816797184000000, 139352822480378029387123167068160000000, 14863555768518278744824500982673408262144000000000, 61707340455179609358720715109663452970925870494515200000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as (conjectured) in A102693. Each term is divisible by the corresponding superfactorial, A000178(n), as in A203471.

Crossrefs

Programs

  • Magma
    [(&*[Factorial(2*k-1)/Factorial(k+1): k in [2..n+1]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
    
  • Maple
    a:= n-> mul(mul(i+j, i=2..j-1), j=3..n+1):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    (* First program *)
    f[j_]:= j+1; z = 16;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n, z}]           (* A203470 *)
    Table[v[n+1]/v[n], {n, z-1}]  (* A102693 *)
    Table[v[n]/d[n], {n, 20}]     (* A203471 *)
    (* Second program *)
    Table[Product[Gamma[2*j]/Gamma[j+2], {j,2,n+1}], {n,20}] (* G. C. Greubel, Aug 29 2023 *)
  • Python
    from math import prod, factorial
    def A203470(n): return prod(factorial(2*k+1)//factorial(k+2) for k in range(1,n+1)) # Chai Wah Wu, Aug 26 2025
  • SageMath
    [product(gamma(2*k)/gamma(k+2) for k in range(2,n+2)) for n in range(1,20)] # G. C. Greubel, Aug 29 2023
    

Formula

a(n) ~ sqrt(A) * 2^(n^2 + 5*n/2 + 41/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 71/24) / Pi, where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2021
From G. C. Greubel, Aug 29 2023: (Start)
a(n) = Product_{j=2..n+1} Gamma(2*j)/Gamma(j+2).
a(n) = (2/sqrt(Pi))*( 2^(n+1)^2 * BarnesG(n+5/2)/(Pi^(n/2)*Gamma(n+2)*Gamma(n+3)*BarnesG(3/2)) ).
a(n) = (BarnesG(n+2)/2^n) * Product_{j=2..n+1} Catalan(j). (End)

Extensions

Name edited by Alois P. Heinz, Jul 23 2017