cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203476 a(n) = v(n+1)/v(n), where v = A203475.

Original entry on oeis.org

5, 130, 8500, 1051076, 211255200, 62840245000, 25959932960000, 14224928867370000, 9986120745657472000, 8740787543400204500000, 9333385482079885824000000, 11942338721669302523305000000, 18038821394494464638896640000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[(n+1)^2 + j^2: j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= j^2; z = 15;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]           (* A203475 *)
    Table[v[n+1]/v[n], {n,z-1}]  (* A203476 *)
    (* Second program *)
    Table[Product[j^2 +(n+1)^2 , {j,n}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
  • SageMath
    [product(j^2+(n+1)^2 for j in range(1,n+1)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023

Formula

a(n) ~ 2^(n + 1/2) * exp(Pi*(n+1)/2 - 2*n) * n^(2*n). - Vaclav Kotesovec, Jan 25 2019
a(n) = Product_{j=1..n} ((n+1)^2 + j^2). - G. C. Greubel, Aug 28 2023