cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203479 a(n) = Product_{1 <= i < j <= n} (2^i + 2^j - 2).

Original entry on oeis.org

1, 4, 320, 2027520, 3855986196480, 8359491805553413324800, 79457890145647634305213865656320000, 12897878211365028383150895090566532213003150950400000, 140613650417826346093374124598539442743630963394643403845144815232614400000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as in A203480.

Crossrefs

Programs

  • Magma
    [(&*[(&*[2^j+2^k-2: k in [1..j]])/(2^(j+1)-2): j in [1..n]]): n in [1..15]]; // G. C. Greubel, Aug 28 2023
    
  • Maple
    a:= n-> mul(mul(2^i+2^j-2, i=1..j-1), j=2..n):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    (* First program *)
    f[j_]:= 2^j -1; z = 15;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]               (* A203479 *)
    Table[v[n+1]/v[n], {n,z-1}]      (* A203480 *)
    Table[v[n+1]/(4*v[n]), {n,z-1}]  (* A203481 *)
    (* Second program *)
    Table[Product[2^j +2^k -2, {j,n}, {k,j-1}], {n,15}] (* G. C. Greubel, Aug 28 2023 *)
  • SageMath
    [product(product(2^j+2^k-2 for k in range(1,j)) for j in range(1,n+1)) for n in range(1,16)] # G. C. Greubel, Aug 28 2023

Formula

a(n) ~ c * 2^((n-1)*n*(n+1)/3) / QPochhammer(1/2, 1/4)^(n-1), where c = 0.0732262905669624786298393270254722268761908164083517721484477901776137... - Vaclav Kotesovec, Aug 09 2025

Extensions

Name edited by Alois P. Heinz, Jul 23 2017