A203479 a(n) = Product_{1 <= i < j <= n} (2^i + 2^j - 2).
1, 4, 320, 2027520, 3855986196480, 8359491805553413324800, 79457890145647634305213865656320000, 12897878211365028383150895090566532213003150950400000, 140613650417826346093374124598539442743630963394643403845144815232614400000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..21
Programs
-
Magma
[(&*[(&*[2^j+2^k-2: k in [1..j]])/(2^(j+1)-2): j in [1..n]]): n in [1..15]]; // G. C. Greubel, Aug 28 2023
-
Maple
a:= n-> mul(mul(2^i+2^j-2, i=1..j-1), j=2..n): seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
-
Mathematica
(* First program *) f[j_]:= 2^j -1; z = 15; v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}] Table[v[n], {n,z}] (* A203479 *) Table[v[n+1]/v[n], {n,z-1}] (* A203480 *) Table[v[n+1]/(4*v[n]), {n,z-1}] (* A203481 *) (* Second program *) Table[Product[2^j +2^k -2, {j,n}, {k,j-1}], {n,15}] (* G. C. Greubel, Aug 28 2023 *)
-
SageMath
[product(product(2^j+2^k-2 for k in range(1,j)) for j in range(1,n+1)) for n in range(1,16)] # G. C. Greubel, Aug 28 2023
Formula
a(n) ~ c * 2^((n-1)*n*(n+1)/3) / QPochhammer(1/2, 1/4)^(n-1), where c = 0.0732262905669624786298393270254722268761908164083517721484477901776137... - Vaclav Kotesovec, Aug 09 2025
Extensions
Name edited by Alois P. Heinz, Jul 23 2017
Comments