A203481 a(n) = v(n+1)/(4*v(n)), where v = A203479.
1, 20, 1584, 475456, 541981440, 2376277529600, 40580860464967680, 2725519037191790608384, 724680197846400799531008000, 766028090108619425976217272320000, 3227487808644444231639810280103215104000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..55
Programs
-
Magma
[(&*[2^j + 2^(n+1) - 2: j in [1..n]])/4: n in [1..20]]; // G. C. Greubel, Aug 28 2023
-
Mathematica
(* First program *) f[j_]:= 2^j - 1; z = 15; v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}] Table[v[n], {n, z}] (* A203479 *) Table[v[n+1]/v[n], {n, z-1}] (* A203480 *) Table[v[n+1]/(4*v[n]), {n, z-1}] (* A203481 *) (* Second program *) Table[Product[2^(n+1) +2^k -2, {k,n}]/4, {n,20}] (* G. C. Greubel, Aug 28 2023 *)
-
SageMath
[product(2^j+2^(n+1)-2 for j in range(1,n+1))/4 for n in range(1,21)] # G. C. Greubel, Aug 28 2023
Formula
a(n) = (1/4)*Product_{k=1..n} (2^k + 2^(n+1) - 2). - G. C. Greubel, Aug 28 2023
a(n) ~ c * 2^(n*(n+1)-2), where c = 1/QPochhammer(1/2, 1/4) = A079555 = 2.3842310290313717... - Vaclav Kotesovec, Aug 09 2025