cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203512 a(n) = A203511(n+1)/A203511(n).

Original entry on oeis.org

1, 4, 63, 2288, 151200, 15909696, 2447297356, 518678754048, 145022370451200, 51747613910720000, 22956761806169786496, 12397159038346976323584, 8008689946841913447559168, 6099405371286264105062400000, 5408896545253926024119820000000
Offset: 0

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [(&*[(n+1)*(n+2) +j*(j+1): j in [1..n]])/2^n: n in [1..30]]; // G. C. Greubel, Feb 23 2024
    
  • Mathematica
    f[j_] := j (j + 1)/2; z = 15;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    Table[v[n], {n, 1, z}]               (* A203511 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]  (* A203512 *)
    Table[Product[(n+2)*(n+1)/2 + j*(j+1)/2, {j, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Sep 07 2023 *)
  • SageMath
    def A203512(n): return product((n+1)*(n+2)+j*(j+1) for j in range(1, n+1))//2^n
    [A203512(n) for n in range(31)] # G. C. Greubel, Feb 23 2024

Formula

a(n) ~ 2 * n^(2*n) / exp((2 - Pi/2)*n - 3*Pi/4). - Vaclav Kotesovec, Sep 07 2023

Extensions

More terms from Alois P. Heinz, Jul 29 2017