cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A203518 a(n) = Product_{2 <= i < j <= n+1} (F(i) + F(j)), where F = A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 3, 60, 20160, 259459200, 329533940736000, 102591687479575117824000, 20251578856869019790329341542400000, 6518596139761671764183992268499872995344384000000, 8899914870403074273776879003081000194727401271025610417766400000000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

Each term divides its successor, as in A203519. It is conjectured that each term is divisible by the corresponding superfactorial, A000178(n). See A093883 for a guide to related sequences.

Crossrefs

Programs

  • Maple
    F:= combinat[fibonacci]:
    a:= n-> mul(mul(F(i)+F(j), i=2..j-1), j=3..n+1):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    f[j_] := Fibonacci[j + 1]; z = 15;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
    Table[v[n], {n, 1, z}]                (* A203518 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]   (* A203519 *)
    Table[v[n]/d[n], {n, 1, 20}]          (* A203520 *)

Formula

a(n) ~ c * d^n * phi^(n^3/3 + n^2/2) / 5^(n^2/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio, d = 3.99077126463315610748163699882855013294148355045548571306491607634698645935... and c = 0.019290318831631524125422284... - Vaclav Kotesovec, Apr 09 2021

Extensions

Name edited by Alois P. Heinz, Jul 23 2017

A203520 v(n)/A000178(n); v=A203518 and A000178=(superfactorials).

Original entry on oeis.org

1, 3, 30, 1680, 900900, 9535125600, 4122929827336320, 161481256755920962660800, 1289130207153926967849156327590400, 4850265693548396005370498087328884780717568000, 20141097979706537636828034511787661382412368790843921121216000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

It is conjectured that every term of A203520 is an integer.

Crossrefs

Programs

  • Mathematica
    f[j_] := Fibonacci[j + 1]; z = 15;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
    Table[v[n], {n, 1, z}]                (* A203518 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]   (* A203519 *)
    Table[v[n]/d[n], {n, 1, 20}]          (* A203520 *)
Showing 1-2 of 2 results.