cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A203518 a(n) = Product_{2 <= i < j <= n+1} (F(i) + F(j)), where F = A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 3, 60, 20160, 259459200, 329533940736000, 102591687479575117824000, 20251578856869019790329341542400000, 6518596139761671764183992268499872995344384000000, 8899914870403074273776879003081000194727401271025610417766400000000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

Each term divides its successor, as in A203519. It is conjectured that each term is divisible by the corresponding superfactorial, A000178(n). See A093883 for a guide to related sequences.

Crossrefs

Programs

  • Maple
    F:= combinat[fibonacci]:
    a:= n-> mul(mul(F(i)+F(j), i=2..j-1), j=3..n+1):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    f[j_] := Fibonacci[j + 1]; z = 15;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
    Table[v[n], {n, 1, z}]                (* A203518 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]   (* A203519 *)
    Table[v[n]/d[n], {n, 1, 20}]          (* A203520 *)

Formula

a(n) ~ c * d^n * phi^(n^3/3 + n^2/2) / 5^(n^2/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio, d = 3.99077126463315610748163699882855013294148355045548571306491607634698645935... and c = 0.019290318831631524125422284... - Vaclav Kotesovec, Apr 09 2021

Extensions

Name edited by Alois P. Heinz, Jul 23 2017

A203519 a(n) = v(n+1)/v(n), where v=A203518.

Original entry on oeis.org

3, 20, 336, 12870, 1270080, 311323584, 197399802600, 321880885724160, 1365311591573529600, 15068868587132753685600, 434169705562891299584593920, 32678748925653999616045678080000, 6431834564578466234122576826339121600
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Crossrefs

Programs

  • Mathematica
    f[j_] := Fibonacci[j + 1]; z = 15;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178(n-1) *)
    Table[v[n], {n, 1, z}]                (* A203518 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]   (* A203519 *)
    Table[v[n]/d[n], {n, 1, 20}]          (* A203520 *)

Formula

a(n) ~ c * phi^(n*(n+2) + 5/6) / 5^(n/2 + 1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and c = 3.990771264633156107481636998828550132941483550455485713064916076346986459357... - Vaclav Kotesovec, Apr 09 2021
Showing 1-2 of 2 results.