A203617 Numbers m such that (m'-1)' = m+1, where m' denotes the arithmetic derivative of m.
30, 210, 246, 858, 1722, 66198, 235290, 282342, 1929378, 1976394, 2214408306
Offset: 1
Examples
235290' = 282343; (282343 - 1)' = 282342' = 235291 = 235290 + 1, so 235290 is a term. 282342' = 235291; (235291 - 1)' = 235290' = 282343 = 282342 + 1, so 282342 is a term.
Programs
-
Maple
with(numtheory); P:=proc(i) local a,n,p,pfs; for n from 1 to i do pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs) ; pfs:=ifactors(a-1)[2]; a:=(a-1)*add(op(2,p)/op(1,p),p=pfs) ; if a=n+1 then print(n); fi; od; end: P(10000000);
-
PARI
ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]); isok(n) = my(m = ad(n)-1); (m) && ad(m) == n+1; \\ Michel Marcus, Nov 05 2014
Extensions
a(11) from Giovanni Resta, Jun 04 2016
Comments