Original entry on oeis.org
6, 28, 29, 496, 857, 1721, 8128, 164284, 6511664, 33550336, 400902412, 8589869056
Offset: 1
-
Select[Range[2*10^5], #3 == #1 + 2 #2 & @@ Prepend[Map[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &, {#, DivisorSigma[1, #]}], #] &] (* Michael De Vlieger, Feb 25 2022 *)
-
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A342925(n) = A003415(sigma(n));
isA342922(n) = (A342925(n)==(n+(2*A003415(n))));
A203618
Numbers m such that (m'+1)' = m-1, where m' is the arithmetic derivative of m.
Original entry on oeis.org
1, 2, 6, 42, 104, 120, 165, 245, 272, 561, 1806, 47058, 765625, 1137501, 3874128, 9131793, 2214502422, 52495396602
Offset: 1
765625' = 1137500; (1137500 + 1)' = 1137501' = 765624 = 765625 - 1, so 765625 is a term.
1137501' = 765624; (765624 + 1)' = 765625' = 1137500 = 1137501 - 1, so 1137501 is a term.
-
with(numtheory);
P:=proc(i)
local a,n,p,pfs;
for n from 1 to i do
pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs);
pfs:=ifactors(a+1)[2]; a:=(a+1)*add(op(2,p)/op(1,p),p=pfs);
if a=n-1 then print(n); fi;
od;
end:
P(10000000);
-
A003415[n_]:=If[Abs[n]<2,0,n*Total[#2/#1&@@@FactorInteger[Abs[n]]]];
Select[Range[1,100000],A003415[A003415[#]+1]==#-1&] (* Julien Kluge, Jul 08 2016 *)
-
ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);
isok(n) = ad(ad(n)+1) == n-1; \\ Michel Marcus, Nov 05 2014
Showing 1-2 of 2 results.
Comments