cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203640 Length of the cycle reached for the map x->A203639(x), starting at n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Jan 04 2012

Keywords

Comments

Differs from A063775 at n = 64, 81, 128, 144, 162, 192, ... Differs from A053164 at n = 64, 81, 128, 144, 162, 192, 216, 243,... Differs from A043289 at n = 64, 128, 144, 192, 216, 225,... - R. J. Mathar, Jan 11 2012

Examples

			Starting from n = 12, the derived sequence is A203639(12) = 4, A203639(4) = 4, A203639(4) = 4, etc, and the sequence 12, 4, 4, 4, 4, ... has cycle length 1. Therefore a(12) = 1.
From _Antti Karttunen_, Sep 13 2017: (Start)
Starting from n = 16, the derived sequence is A203639(16) = 32, A203639(32) = 80, A203639(80) = 32, etc, and the sequence 16, 32, 80, 32, 80, ... has cycle length 2. Therefore a(16) = 2.
Starting from n = 2916, the derived sequence is A203639(2916) = 5832, A203639(5832) = 17496, A203639(17496) = 61236, A203639(61236) = 20412, A203639(20412) = 5832,  etc, and the sequence 2916, 5832, 17496, 61236, 20412, 5832, 17496, 61236, 20412, ... has cycle length 4. Therefore a(2916) = 4. This is also the first point where the sequence attains a value larger than 2. (End)
		

Programs

  • Maple
    idx := proc(L,n) for i from 1 to nops(L) do if op(i,L)=n then return i ; end if; end do: return -1; end proc:
    A203640 := proc(n) local s,dr,d; s := [n] ;dr :=n ; for d from 1 do dr := A203639(dr) ; ii := idx(s,dr) ; if ii >0 then return nops(s)-ii+1 ; else s := [op(s),dr] ; end if ; end do: end proc:
  • Scheme
    (define (A203640 n) (let loop ((visited (list n)) (i 1)) (let ((next (A203639 (car visited)))) (cond ((member next visited) => (lambda (prepath) (+ 1 (- i (length prepath))))) (else (loop (cons next visited) (+ 1 i)))))))
    ;; (Code for A203639 given under that entry.) - Antti Karttunen, Sep 13 2017