cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A384914 The number of unordered factorizations of n into numbers of the form p^(k^2) where p is prime and k >= 0 (A323520).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 12 2025

Keywords

Comments

First differs from A203640, A295658 and A365333 at n = 64, from A043289 and A053164 at n = 81, and from A063775 at n = 512.

Examples

			a(16) = 2 since 4 has 2 factorizations: 2^1 * 2^1 * 2^1 * 2^1 and 2^4, with exponents 1 and 4 that are squares.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = If[n == 0, 1, Sum[Sum[d * Boole[IntegerQ[Sqrt[d]]], {d, Divisors[j]}] * s[n-j], {j, 1, n}] / n];
    f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = if(n < 1, 1, sum(j = 1, n, sumdiv(j, d, d*issquare(d)) * s(n-j))/n);
    a(n) = vecprod(apply(s, factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A001156(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.08451356983124311685..., where f(x) = (1-x) / Product_{k>=1} (1-x^(k^2)).

A203639 Multiplicative with a(p^e) = e*p^(e-1).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 12, 6, 1, 1, 4, 1, 1, 1, 32, 1, 6, 1, 4, 1, 1, 1, 12, 10, 1, 27, 4, 1, 1, 1, 80, 1, 1, 1, 24, 1, 1, 1, 12, 1, 1, 1, 4, 6, 1, 1, 32, 14, 10, 1, 4, 1, 27, 1, 12, 1, 1, 1, 4, 1, 1, 6, 192, 1, 1, 1, 4, 1, 1, 1, 72, 1, 1, 10, 4, 1, 1, 1, 32, 108, 1, 1, 4, 1, 1, 1, 12, 1, 6, 1, 4, 1, 1, 1, 80, 1, 14, 6, 40
Offset: 1

Views

Author

R. J. Mathar, Jan 04 2012

Keywords

Crossrefs

Cf. A005361, A007947, A203640 (cycles).

Programs

  • Maple
    A203639 := proc(n)
        local a,f,e ;
        a :=1;
        for f in ifactors(n)[2] do
            e := op(2,f) ;
            p := op(1,f) ;
            a := a*e*p^(e-1) ;
        end do;
        a;
    end proc; # R. J. Mathar, Jan 11 2012
  • Mathematica
    Table[n*Times @@ Transpose[FactorInteger[n]][[2]] / Last[Select[Divisors[n], SquareFreeQ]], {n, 1, 100}] (* Vaclav Kotesovec, Dec 18 2019 *)
    f[p_, e_] := e*p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=my(f=factor(n)); n*prod(i=1,#f~, f[i,2]/f[i,1]) \\ Charles R Greathouse IV, Dec 09 2016
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X/(1 - p*X)^2))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
    (Scheme, with memoization-macro definec)
    (definec (A203639 n) (if (= 1 n) n (* (A067029 n) (expt (A020639 n) (+ -1 (A067029 n))) (A203639 (A028234 n)))))
    ;; Antti Karttunen, Sep 13 2017

Formula

a(n) = n*A005361(n)/A007947(n).
a(n)=1 for all squarefree n.
Dirichlet g.f.: zeta^2(s-1)*product_{primes p} (1-2*p^(1-s)+p^(2-2s)+p^(-s)). - R. J. Mathar, Jan 19 2012
a(n) = A005361(n)*A003557(n). - Vaclav Kotesovec, Jun 20 2020

Extensions

Terms a(1)-a(24) confirmed and terms a(25)-a(100) added by John W. Layman, Jan 04 2012

A365333 The number of exponentially odd coreful divisors of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

First differs from A043289, A053164, A063775, A203640 and A295658 at n = 64.
The number of squares dividing the largest exponentially odd divisor of n is A325837(n).
The sum of the exponentially odd divisors of the largest square dividing n is A365334(n). [corrected, Sep 08 2023]
The number of exponentially odd divisors of the largest square dividing n is the same as the number of squares dividing n, A046951(n). - Amiram Eldar, Sep 08 2023

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Max[1, Floor[e/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> max(1, x\2), factor(n)[, 2]));

Formula

a(n) = A325837(A008833(n)).
a(n) = 1 if and only if n is a biquadratefree number (A046100).
Multiplicative with a(p^e) = max(1, floor(e/2)).
Dirichlet g.f.: zeta(s) * zeta(4*s) * zeta(6*s) / zeta(12*s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 15015/(1382*Pi^2) = 1.100823... .

Extensions

Name corrected by Amiram Eldar, Sep 08 2023
Showing 1-3 of 3 results.