A203641 Number of arrays of n 0..10 integers with new values introduced in order 0..10 but otherwise unconstrained.
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213596, 27644358, 190895863, 1382847419, 10477213268, 82797679445, 680685836527, 5806124780384, 51245294979716, 466668627500968, 4371727233798927, 42000637216351225
Offset: 1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Eric Weisstein's World of Mathematics, Set Partition.
- Index entries for linear recurrences with constant coefficients, signature (56, -1365, 19020, -167223, 965328, -3686255, 9133180, -13926276, 11655216, -3991680).
Programs
-
Maple
f:= n -> add(Stirling2(n,k),k=1..11): map(f, [$1..100]); # Robert Israel, Aug 08 2016
-
PARI
a(n) = sum(k=1,11,stirling(n,k, 2)); \\ Michel Marcus, Mar 03 2015
Formula
Empirical: a(n) = 56*a(n-1) -1365*a(n-2) +19020*a(n-3) -167223*a(n-4) +965328*a(n-5) -3686255*a(n-6) +9133180*a(n-7) -13926276*a(n-8) +11655216*a(n-9) -3991680*a(n-10).
a(n) = Sum_{k=1..11} stirling2(n,k). - Danny Rorabaugh, Mar 03 2015
G.f.: Sum_{k=1..11} Product_{j=1..k} x/(1-j*x). This confirms the empirical recurrence. - Robert Israel, Aug 08 2016
Comments