A203717 A Catalan triangle by rows.
1, 1, 1, 1, 3, 1, 1, 8, 4, 1, 1, 20, 15, 5, 1, 1, 50, 53, 21, 6, 1, 1, 126, 182, 84, 28, 7, 1, 1, 322, 616, 326, 120, 36, 8, 1, 1, 834, 2070, 1242, 495, 165, 45, 9, 1, 1, 2187, 6930, 4680, 1997, 715, 220, 55, 10, 1, 1, 5797, 23166, 17512, 7942, 3003, 1001, 286, 66, 11, 1
Offset: 1
Examples
First few rows of the array begin: 1,...1,...1,...1,...1,...; 1,...2,...4,...9,..21,...; = A001006 1,...2,...5,..13,..36,...; = A036765 1,...2,...5,..14,..41,...; = A036766 1,...2,...5,..14,..42,...; = A036767 ... Taking finite differences of array terms starting from the top by columns, we obtain row terms of the triangle. First few rows of the triangle are: 1; 1, 1; 1, 3, 1; 1, 8, 4, 1; 1, 20, 15, 5, 1; 1, 50, 53, 21, 6, 1; 1, 126, 182, 84, 28, 7, 1; 1, 322, 616, 326, 120, 36, 8, 1; 1, 834, 2070, 1242, 495, 165, 45, 9, 1; 1, 2187, 6930, 4680, 1997, 715, 220, 55, 10, 1; ... Example: Row 4 of the triangle = (1, 8, 4, 1) = the finite differences of (1, 9, 13, 14), column 4 of the array. Term (3,4) = 13 of the array is the upper left term of M^4, where M is an infinite square production matrix with four diagonals of 1's starting at (1,2), (1,1), (2,1), and (3,1); with the rest zeros.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, t, k) option remember; `if`(n=0, 1, `if`(t>0, add(b(j-1, k$2)*b(n-j, t-1, k), j=1..n), b(n-1, k$2))) end: T:= (n, k)-> b(n, k-1$2) -`if`(k=1, 0, b(n, k-2$2)): seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Jun 29 2014 # second Maple program: b:= proc(u, o, k) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, k), j=1..min(1, u))+ add(b(u+j-1, o-j, k), j=1..min(k, o))) end: T:= (n, k)-> b(0, n, k)-`if`(k=0, 0, b(0, n, k-1)): seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Aug 28 2017
-
Mathematica
b[n_, t_, k_] := b[n, t, k] = If[n == 0, 1, If[t > 0, Sum[b[j-1, k, k]*b[n - j, t-1, k], {j, 1, n}], b[n-1, k, k]]]; T[n_, k_] := b[n, k-1, k-1] - If[k == 1, 0, b[n, k-2, k-2]]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)
-
Python
from sympy.core.cache import cacheit @cacheit def b(u, o, k): return 1 if u + o==0 else sum([b(u - j, o + j - 1, k) for j in range(1, min(1, u) + 1)]) + sum([b(u + j - 1, o - j, k) for j in range(1, min(k, o) + 1)]) def T(n, k): return b(0, n, k) - (0 if k==0 else b(0, n, k - 1)) for n in range(1, 16): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Aug 30 2017
Formula
Finite differences of antidiagonals of an array in which n-th array row is generated from powers of M, extracting successive upper left terms. M for n-th row of the array is an infinite square production matrix composed of (n+1) diagonals of 1's and the rest zeros. Given the upper left term of the array is (1,1), the diagonals begin at (1,2), (1,1), (2,1), (3,1), (4,1),...
Comments