A291680
Number T(n,k) of permutations p of [n] such that in 0p the largest up-jump equals k and no down-jump is larger than 2; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 9, 8, 4, 0, 1, 25, 36, 20, 10, 0, 1, 71, 156, 108, 58, 26, 0, 1, 205, 666, 586, 340, 170, 74, 0, 1, 607, 2860, 3098, 2014, 1078, 528, 218, 0, 1, 1833, 12336, 16230, 11888, 6772, 3550, 1672, 672, 0, 1, 5635, 53518, 85150, 69274, 42366, 23284, 11840, 5454, 2126
Offset: 0
T(4,1) = 1: 1234.
T(4,2) = 9: 1243, 1324, 1342, 2134, 2143, 2314, 2341, 2413, 2431.
T(4,3) = 8: 1423, 1432, 3124, 3142, 3214, 3241, 3412, 3421.
T(4,4) = 4: 4213, 4231, 4312, 4321.
T(5,5) = 10: 53124, 53142, 53214, 53241, 53412, 53421, 54213, 54231, 54312, 54321.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 2;
0, 1, 9, 8, 4;
0, 1, 25, 36, 20, 10;
0, 1, 71, 156, 108, 58, 26;
0, 1, 205, 666, 586, 340, 170, 74;
0, 1, 607, 2860, 3098, 2014, 1078, 528, 218;
...
Columns k=0-10 give:
A000007,
A057427,
A291683,
A321110,
A321111,
A321112,
A321113,
A321114,
A321115,
A321116,
A321117.
-
b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, k), j=1..min(2, u))+
add(b(u+j-1, o-j, k), j=1..min(k, o)))
end:
T:= (n, k)-> b(0, n, k)-`if`(k=0, 0, b(0, n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
-
b[u_, o_, k_] := b[u, o, k] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, k], {j, 1, Min[2, u]}] + Sum[b[u+j-1, o-j, k], {j, 1, Min[k, o]}]];
T[n_, k_] := b[0, n, k] - If[k == 0, 0, b[0, n, k-1]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2019, after Alois P. Heinz *)
-
from sympy.core.cache import cacheit
@cacheit
def b(u, o, k): return 1 if u + o==0 else sum([b(u - j, o + j - 1, k) for j in range(1, min(2, u) + 1)]) + sum([b(u + j - 1, o - j, k) for j in range(1, min(k, o) + 1)])
def T(n, k): return b(0, n, k) - (0 if k==0 else b(0, n, k - 1))
for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Aug 30 2017
A288942
Number A(n,k) of ordered rooted trees with n non-root nodes and all outdegrees <= k; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 9, 1, 0, 1, 1, 2, 5, 13, 21, 1, 0, 1, 1, 2, 5, 14, 36, 51, 1, 0, 1, 1, 2, 5, 14, 41, 104, 127, 1, 0, 1, 1, 2, 5, 14, 42, 125, 309, 323, 1, 0, 1, 1, 2, 5, 14, 42, 131, 393, 939, 835, 1, 0
Offset: 0
A(4,2) = 9:
.
. o o o o o o o o o
. | | | | / \ / \ / \ / \ / \
. o o o o o o o o o o o o o o
. | | / \ / \ | | ( ) ( ) | |
. o o o o o o o o o o o o o o
. | / \ | | | |
. o o o o o o o
. |
. o
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 4, 5, 5, 5, 5, 5, 5, ...
0, 1, 9, 13, 14, 14, 14, 14, 14, ...
0, 1, 21, 36, 41, 42, 42, 42, 42, ...
0, 1, 51, 104, 125, 131, 132, 132, 132, ...
0, 1, 127, 309, 393, 421, 428, 429, 429, ...
0, 1, 323, 939, 1265, 1385, 1421, 1429, 1430, ...
Columns k=0..10 give:
A000007,
A000012,
A001006,
A036765,
A036766,
A036767,
A036768,
A036769,
A291823,
A291824,
A291825.
Main diagonal (and upper diagonals) give
A000108.
First lower diagonal gives
A001453.
-
b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, k), j=1..min(1, u))+
add(b(u+j-1, o-j, k), j=1..min(k, o)))
end:
A:= (n, k)-> b(0, n, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
A[n_, k_] := b[0, n, k];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 27 2017, translated from Maple *)
-
T(n,k)=polcoeff(serreverse(x*(1-x)/(1-x*x^k) + O(x^2*x^n)), n+1);
for(n=0, 10, for(k=0, 10, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 29 2017
A140662
Number of possible column states for self-avoiding polygons in a slit of width n.
Original entry on oeis.org
1, 3, 8, 20, 50, 126, 322, 834, 2187, 5797, 15510, 41834, 113633, 310571, 853466, 2356778, 6536381, 18199283, 50852018, 142547558, 400763222, 1129760414, 3192727796, 9043402500, 25669818475, 73007772801, 208023278208, 593742784828, 1697385471210, 4859761676390
Offset: 1
The 20 Motzkin-paths of length 5 with at least one up-step are: UUDDF, UUDFD, UUFDD, UDUDF, UDUFD, UDFUD, UDFFF, UFUDD, UFDUD, UFDFF, UFFDF, UFFFD, FUUDD, FUDUD, FUDFF, FUFDF, FUFFD, FFUDF, FFUFD, FFFUD.
-
a := n -> n*(n + 1)*hypergeom([1, -n/2 + 1, 1/2 - n/2], [2, 3], 4)/2:
seq(simplify(a(n)), n = 1..30); # Peter Luschny, Dec 03 2024
-
# A generator of the Motzkin-paths with at least one up-step.
C = str.count
def aGen(n: int): # -> Generator[str, Any, list[str]]
a = [""]
for w in a:
if len(w) == n + 1:
if (C(w, "U") > 0 and C(w, "U") == C(w, "D")): yield w
else:
for j in "UDF":
u = w + j
if C(u, "U") >= C(u, "D"): a += [u]
return a
for n in range(1, 6):
SAP = [w for w in aGen(n)]
print(len(SAP), ":", SAP) # Peter Luschny, Dec 03 2024
A291662
Number of ordered rooted trees with 2n non-root nodes such that the maximal outdegree equals n.
Original entry on oeis.org
1, 1, 8, 53, 326, 1997, 12370, 77513, 490306, 3124541, 20030000, 129024469, 834451788, 5414950283, 35240152706, 229911617041, 1503232609082, 9847379391133, 64617565719052, 424655979547781, 2794563003870310, 18412956934908669, 121455445321173578
Offset: 0
a(2) = 8:
.
. o o o o o o o o
. | | | / \ / \ / \ / \ / \
. o o o o o o o o o o o o o
. | / \ / \ | | ( ) ( ) | |
. o o o o o o o o o o o o o
. / \ | | | |
. o o o o o o
-
b[n_, t_, k_] := b[n, t, k] = If[n == 0, 1, If[t > 0, Sum[b[j - 1, k, k]* b[n - j, t - 1, k], {j, 1, n}], b[n - 1, k, k]]];
T[n_, k_] := b[n, k - 1, k - 1] - If[k == 1, 0, b[n, k - 2, k - 2]];
a[n_] := T[2n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 29 2019, after Alois P. Heinz in A203717 *)
-
from sympy.core.cache import cacheit
@cacheit
def b(u, o, k): return 1 if u + o==0 else sum([b(u - j, o + j - 1, k) for j in range(1, min(1, u) + 1)]) + sum([b(u + j - 1, o - j, k) for j in range(1, min(k, o) + 1)])
def a(n): return b(0, 2*n, n) - (0 if n==0 else b(0, 2*n, n - 1))
print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 30 2017
A303259
Number of ordered rooted trees with n non-root nodes such that the maximal outdegree equals ceiling(n/2).
Original entry on oeis.org
1, 1, 1, 3, 8, 15, 53, 84, 326, 495, 1997, 3003, 12370, 18564, 77513, 116280, 490306, 735471, 3124541, 4686825, 20030000, 30045015, 129024469, 193536720, 834451788, 1251677700, 5414950283, 8122425444, 35240152706, 52860229080, 229911617041, 344867425584
Offset: 0
-
b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, k), j=1..min(1, u))+
add(b(u+j-1, o-j, k), j=1..min(k, o)))
end:
a:= n-> `if`(n=0, 1, (j-> b(0, n, j)-b(0, n, j-1))(ceil(n/2))):
seq(a(n), n=0..35);
-
b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1,
Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] +
Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
a[n_] := If[n == 0, 1, With[{j = Ceiling[n/2]}, b[0, n, j]-b[0, n, j-1]]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
A303271
Number of ordered rooted trees with n non-root nodes such that the maximal outdegree equals three.
Original entry on oeis.org
1, 4, 15, 53, 182, 616, 2070, 6930, 23166, 77429, 258973, 867230, 2908633, 9772556, 32896088, 110949072, 374934201, 1269505482, 4306750577, 14638006449, 49843505965, 170021694271, 580954640775, 1988357053020, 6816047416230, 23400699072231, 80455436055699
Offset: 3
-
b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, k), j=1..min(1, u))+
add(b(u+j-1, o-j, k), j=1..min(k, o)))
end:
a:= n-> b(0, n, 3)-b(0, n, 2):
seq(a(n), n=3..35);
Showing 1-6 of 6 results.
Comments