cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A036765 Number of ordered rooted trees with n non-root nodes and all outdegrees <= three.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 104, 309, 939, 2905, 9118, 28964, 92940, 300808, 980864, 3219205, 10626023, 35252867, 117485454, 393133485, 1320357501, 4449298136, 15038769672, 50973266380, 173214422068, 589998043276, 2014026871496, 6889055189032, 23608722350440
Offset: 0

Views

Author

Keywords

Comments

Number of Dyck n-paths that avoid UUUU. For example, a(4)=13 counts all 14 Dyck 4-paths except UUUUDDDD. - David Callan, Dec 09 2004
Number of restricted growth strings for Dyck paths with at most 2 consecutive rises (this is equivalent to the comment above, see example). - Joerg Arndt, Oct 31 2012
Let A(x) be the g.f. for the sequence of numbers of Dyck words with at most k consecutive ones (paths with at most k consecutive up-steps 'U', Restricted Growth Strings with at most k-1 consecutive rises), then B(x) := x*A(x) is the series reversion of x/(1+x+x^2+...+x^k). - Joerg Arndt, Oct 31 2012
a(n) is the number of ordered unlabeled rooted trees on n+1 nodes where each node has no more than 3 children. - Geoffrey Critzer, Jan 05 2013
a(n) = number of noncrossing partitions of [n] in which all blocks are of size <= 3. - David Callan, Aug 27 2014

Examples

			a(4) = 13 since the top row of M^4 = (13, 8, 4, 1, 1).
From _Joerg Arndt_, Oct 31 2012: (Start)
a(5)=36 because there are 36 Dyck words of length 5 that avoid "1111":
[ #]      RGS                rises         Dyck word
[ 1]    [ . . . . . ]     [ . . . . . ]    1.1.1.1.1.
[ 2]    [ . . . . 1 ]     [ . . . . 1 ]    1.1.1.11..
[ 3]    [ . . . 1 . ]     [ . . . 1 . ]    1.1.11..1.
[ 4]    [ . . . 1 1 ]     [ . . . 1 . ]    1.1.11.1..
[ 5]    [ . . . 1 2 ]     [ . . . 1 2 ]    1.1.111...
[ 6]    [ . . 1 . . ]     [ . . 1 . . ]    1.11..1.1.
[ 7]    [ . . 1 . 1 ]     [ . . 1 . 1 ]    1.11..11..
[ 8]    [ . . 1 1 . ]     [ . . 1 . . ]    1.11.1..1.
[ 9]    [ . . 1 1 1 ]     [ . . 1 . . ]    1.11.1.1..
[10]    [ . . 1 1 2 ]     [ . . 1 . 1 ]    1.11.11...
[11]    [ . . 1 2 . ]     [ . . 1 2 . ]    1.111...1.
[12]    [ . . 1 2 1 ]     [ . . 1 2 . ]    1.111..1..
[13]    [ . . 1 2 2 ]     [ . . 1 2 . ]    1.111.1...
[--]    [ . . 1 2 3 ]     [ . . 1 2 3 ]    1.1111....
[14]    [ . 1 . . . ]     [ . 1 . . . ]    11..1.1.1.
[15]    [ . 1 . . 1 ]     [ . 1 . . 1 ]    11..1.11..
[16]    [ . 1 . 1 . ]     [ . 1 . 1 . ]    11..11..1.
[17]    [ . 1 . 1 1 ]     [ . 1 . 1 . ]    11..11.1..
[18]    [ . 1 . 1 2 ]     [ . 1 . 1 2 ]    11..111...
[19]    [ . 1 1 . . ]     [ . 1 . . . ]    11.1..1.1.
[20]    [ . 1 1 . 1 ]     [ . 1 . . 1 ]    11.1..11..
[21]    [ . 1 1 1 . ]     [ . 1 . . . ]    11.1.1..1.
[22]    [ . 1 1 1 1 ]     [ . 1 . . . ]    11.1.1.1..
[23]    [ . 1 1 1 2 ]     [ . 1 . . 1 ]    11.1.11...
[24]    [ . 1 1 2 . ]     [ . 1 . 1 . ]    11.11...1.
[25]    [ . 1 1 2 1 ]     [ . 1 . 1 . ]    11.11..1..
[26]    [ . 1 1 2 2 ]     [ . 1 . 1 . ]    11.11.1...
[27]    [ . 1 1 2 3 ]     [ . 1 . 1 2 ]    11.111....
[28]    [ . 1 2 . . ]     [ . 1 2 . . ]    111...1.1.
[29]    [ . 1 2 . 1 ]     [ . 1 2 . 1 ]    111...11..
[30]    [ . 1 2 1 . ]     [ . 1 2 . . ]    111..1..1.
[31]    [ . 1 2 1 1 ]     [ . 1 2 . . ]    111..1.1..
[32]    [ . 1 2 1 2 ]     [ . 1 2 . 1 ]    111..11...
[33]    [ . 1 2 2 . ]     [ . 1 2 . . ]    111.1...1.
[34]    [ . 1 2 2 1 ]     [ . 1 2 . . ]    111.1..1..
[35]    [ . 1 2 2 2 ]     [ . 1 2 . . ]    111.1.1...
[36]    [ . 1 2 2 3 ]     [ . 1 2 . 1 ]    111.11....
[--]    [ . 1 2 3 . ]     [ . 1 2 3 . ]    1111....1.
[--]    [ . 1 2 3 1 ]     [ . 1 2 3 . ]    1111...1..
[--]    [ . 1 2 3 2 ]     [ . 1 2 3 . ]    1111..1...
[--]    [ . 1 2 3 3 ]     [ . 1 2 3 . ]    1111.1....
[--]    [ . 1 2 3 4 ]     [ . 1 2 3 4 ]    11111.....
(Dots are used for zeros for readability.)
(End)
		

Crossrefs

Right hand column of triangle A064580. The sequence of sequences A000007 (0^n), A000012 (constant 1), A001006 (Motzkin), A036765, A036766, ... tends to A000108 (Catalan).
Column k=3 of A288942.

Programs

  • Magma
    [&+[Binomial(n+1, n-2*k)*Binomial(n+1, k)/(n+1): k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Oct 16 2018
  • Maple
    r := 3; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ];
    # second Maple program:
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1), j=1..min(1, u))+
          add(b(u+j-1, o-j), j=1..min(3, o)))
        end:
    a:= n-> b(0, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    InverseSeries[Series[y/(1+y+y^2+y^3), {y, 0, 24}], x] (* then A(x)=y(x)/x *) (* Len Smiley, Apr 11 2000 *)
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    a[n_] := b[0, n, 3];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 05 2017, after Alois P. Heinz *)
    Table[HypergeometricPFQ[{-n-1, (1-n)/2, -n/2}, {1, 3/2}, -1], {n, 0, 28}] (* Vladimir Reshetnikov, Oct 15 2018 *)
  • PARI
    {a(n)=sum(j=0,n\2,binomial(n+1, n-2*j)*binomial(n+1,j))/(n+1)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A+(x*A)^2+(x*A)^3);polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x*A+x*O(x^n))^j)*x^m/m)));polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x*A+x*O(x^n))^j)*(1-x*A)^(2*m+1)*x^m/m)));polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))*exp(sum(m=1,n,A^m*sum(k=0,m-1,binomial(m-1,k)*binomial(m,k)*x^k)/(1-x)^(2*m)*x^(2*m)/m) +x*O(x^n)));polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))*exp(sum(m=1,n,A^m*sum(k=0,n,binomial(m+k-1,k)*binomial(m+k,k)*x^k)*x^(2*m)/m) +x*O(x^n)));polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    Vec(serreverse(x/(1+x+x^2+x^3)+O(x^66))/x) /* Joerg Arndt, Jun 10 2011 */
    

Formula

a(n) = (1/(n+1))*Sum_{j=0..floor(n/2)} binomial(n+1, n-2*j)*binomial(n+1, j). G.f. A(z) satisfies A=1+z*A+(z*A)^2+(z*A)^3. - Emeric Deutsch, Nov 29 2003
G.f.: F(x)/x where F(x) is the reversion of x/(1+x+x^2+x^3). - Joerg Arndt, Jun 10 2011
From Paul D. Hanna, Feb 13 2011: (Start)
O.g.f.: A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2*x^k*A(x)^k) * x^n/n ).
O.g.f.: A(x) = exp( Sum_{n>=1} (Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^k)*(1-x*A(x))^(2*n+1)* x^n/n ). (End)
From Paul D. Hanna, Feb 24 2011: (Start)
O.g.f.: A(x) = (1/(1-x))*exp( Sum_{n>=1} A(x)^n*(Sum_{k=0..n-1} C(n-1,k)*C(n,k)*x^k)/(1-x)^(2*n) * x^(2*n)/n ).
O.g.f.: A(x) = (1/(1-x))*exp( Sum_{n>=1} A(x)^n*(Sum_{k>=0} C(n+k-1,k)*C(n+k,k)*x^k) * x^(2*n)/n ). (End)
Let M = an infinite quadradiagonal matrix with all 1's in every diagonal: (sub, main, super, and super-super), and the rest zeros. V = vector [1,0,0,0,...]. The sequence = left column terms of M*V iterates. - Gary W. Adamson, Jun 06 2011
An infinite square production matrix M for the sequence is:
1, 1, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, ...
2, 1, 0, 1, 0, 0, ...
3, 2, 1, 0, 1, 0, ...
4, 3, 2, 1, 0, 1, ...
5, 4, 3, 2, 1, 0, ...
..., such that a(n) is the top left term of M^n. - Gary W. Adamson, Feb 21 2012
D-finite with recurrence: 2*(n+1)*(2*n+3)*(13*n-1)*a(n) = (143*n^3 + 132*n^2 - 17*n - 18)*a(n-1) + 4*(n-1)*(26*n^2 + 11*n - 6)*a(n-2) + 16*(n-2)*(n-1)*(13*n + 12)*a(n-3). - Vaclav Kotesovec, Sep 09 2013
a(n) ~ c*d^n/n^(3/2), where d = 1/12*((6371+624*sqrt(78))^(2/3)+11*(6371+624*sqrt(78))^(1/3)+217)/(6371+624*sqrt(78))^(1/3) = 3.610718613276... is the root of the equation -16-8*d-11*d^2+4*d^3=0 and c = sqrt(f/Pi) = 0.9102276936417..., where f = 1/9984*(9295 + (13*(45085576939 - 795629568*sqrt(78)))^(1/3) + (13*(45085576939 + 795629568*sqrt(78)))^(1/3)) is the root of the equation -128+1696*f-9295*f^2+3328*f^3=0. - Vaclav Kotesovec, Sep 10 2013
From Peter Bala, Jun 21 2015: (Start)
The coefficient of x^n in A(x)^r equals r/(n + r)*Sum_{k = 0..floor(n/2)} binomial(n + r,k)*binomial(n + r,n - 2*k) by the Lagrange-Bürmann formula.
O.g.f. A(x) = exp(Sum_{n >= 1} A005725(n)*x^n/n), where A005725(n) = Sum_{k = 0..floor(n/2)} binomial(n,k)*binomial(n,n - 2*k). Cf. A186241, A198951, A200731. (End)
a(n) = hypergeom([-n-1, (1-n)/2, -n/2], [1, 3/2], -1). - Vladimir Reshetnikov, Oct 15 2018

Extensions

Name clarified by Andrew Howroyd, Dec 04 2017

A292085 Number A(n,k) of (unlabeled) rooted trees with n leaf nodes and without unary nodes or outdegrees larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 4, 3, 0, 1, 1, 2, 5, 9, 6, 0, 1, 1, 2, 5, 11, 23, 11, 0, 1, 1, 2, 5, 12, 30, 58, 23, 0, 1, 1, 2, 5, 12, 32, 80, 156, 46, 0, 1, 1, 2, 5, 12, 33, 87, 228, 426, 98, 0, 1, 1, 2, 5, 12, 33, 89, 251, 656, 1194, 207, 0
Offset: 1

Views

Author

Alois P. Heinz, Sep 08 2017

Keywords

Examples

			:               T(4,3) = 4             :
:                                      :
:       o       o         o       o    :
:      / \     / \       / \     /|\   :
:     o   N   o   o     o   N   o N N  :
:    / \     ( ) ( )   /|\     ( )     :
:   o   N    N N N N  N N N    N N     :
:  ( )                                 :
:  N N                                 :
:                                      :
Square array A(n,k) begins:
  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,   2,   2,   2,   2,   2,   2, ...
  0,  2,   4,   5,   5,   5,   5,   5, ...
  0,  3,   9,  11,  12,  12,  12,  12, ...
  0,  6,  23,  30,  32,  33,  33,  33, ...
  0, 11,  58,  80,  87,  89,  90,  90, ...
  0, 23, 156, 228, 251, 258, 260, 261, ...
		

Crossrefs

Main diagonal gives A000669.

Programs

  • Maple
    b:= proc(n, i, v, k) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n
    				
  • Mathematica
    b[n_, i_, v_, k_] := b[n, i, v, k] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, If[v == n, 1, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, v - j, k], {j, 0, Min[n/i, v]}]]]];
    A[n_, k_] := A[n, k] = If[n < 2, n, Sum[b[n, n + 1 - j, j, k], {j, 2, Min[n, k]}]];
    Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=1..k} A292086(n,j).

A292086 Number T(n,k) of (unlabeled) rooted trees with n leaf nodes and without unary nodes such that k is the maximum of 1 and the node outdegrees; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 2, 1, 0, 6, 17, 7, 2, 1, 0, 11, 47, 22, 7, 2, 1, 0, 23, 133, 72, 23, 7, 2, 1, 0, 46, 380, 230, 77, 23, 7, 2, 1, 0, 98, 1096, 751, 256, 78, 23, 7, 2, 1, 0, 207, 3186, 2442, 861, 261, 78, 23, 7, 2, 1, 0, 451, 9351, 8006, 2897, 887, 262, 78, 23, 7, 2, 1
Offset: 1

Views

Author

Alois P. Heinz, Sep 08 2017

Keywords

Examples

			:   T(4,2) = 2        :   T(4,3) = 2      : T(4,4) = 1 :
:                     :                   :            :
:       o       o     :      o       o    :     o      :
:      / \     / \    :     / \     /|\   :   /( )\    :
:     o   N   o   o   :    o   N   o N N  :  N N N N   :
:    / \     ( ) ( )  :   /|\     ( )     :            :
:   o   N    N N N N  :  N N N    N N     :            :
:  ( )                :                   :            :
:  N N                :                   :            :
:                     :                   :            :
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,   1;
  0,  2,   2,   1;
  0,  3,   6,   2,  1;
  0,  6,  17,   7,  2,  1;
  0, 11,  47,  22,  7,  2, 1;
  0, 23, 133,  72, 23,  7, 2, 1;
  0, 46, 380, 230, 77, 23, 7, 2, 1;
  ...
		

Crossrefs

Columns k=1-10 give: A063524, A001190 (for n>1), A292229, A292230, A292231, A292232, A292233, A292234, A292235, A292236.
Row sums give A000669.
Limit of reversed rows gives A292087.

Programs

  • Maple
    b:= proc(n, i, v, k) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n A(n, k)-`if`(k=1, 0, A(n, k-1)):
    seq(seq(T(n, k), k=1..n), n=1..15);
  • Mathematica
    b[n_, i_, v_, k_] := b[n, i, v, k] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, If[v == n, 1, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, v - j, k], {j, 0, Min[n/i, v]}]]]];
    A[n_, k_] := A[n, k] = If[n < 2, n, Sum[b[n, n + 1 - j, j, k], {j, 2, Min[n, k]}]];
    T[n_, k_] := A[n, k] - If[k == 1, 0, A[n, k - 1]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)

Formula

T(n,k) = A292085(n,k) - A292085(n,k-1) for k>2, T(n,1) = A292085(n,1).

A036766 Number of ordered rooted trees with n non-root nodes and all outdegrees <= four.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 125, 393, 1265, 4147, 13798, 46476, 158170, 543050, 1878670, 6542330, 22915999, 80682987, 285378270, 1013564805, 3613262795, 12924536005, 46373266470, 166856922125, 601928551824, 2176616383346, 7888184659826, 28645799759632, 104224861693855
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of Dyck n-paths that avoid UUUUU=(U^5). For example, a(5)=41 counts all 42 Dyck 5-paths except (U^5)(D^5). - David Callan, Sep 25 2006
Number of n-leaf binary trees that do not contain (()(()(()(()(()()))))) as a subtree. - Eric Rowland, Jun 17 2009
a(n) is the number of ordered unlabeled rooted trees on n+1 nodes where each node has no more than 4 children. - Geoffrey Critzer, Jan 05 2013

Crossrefs

The sequence of sequences A000007 (0^n), A000012 (1's), A001006 (Motzkin), A036765, A036766, ... tends to A000108 (Catalan).
Column k=4 of A288942.

Programs

  • Maple
    r := 4; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1), j=0..floor((n-1)/(r+1))), n=1..30) ];
  • Mathematica
    nn=20;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[Series[0==f[x]-x -x f[x]-x f[x]^2-x f[x]^3-x f[x]^4,{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol  (* Geoffrey Critzer, Jan 05 2013 *)
    Table[1/(n+1)*Sum[(-1)^j*Binomial[n+1,j]*Binomial[2*n-5*j,n],{j,0,Floor[n/5]}],{n,0,20}] (* Vaclav Kotesovec, Mar 13 2014 *)
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    a[n_] := b[0, n, 4];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x/polcyclo(5)+O(x^(n+2))),n+1)) /* Ralf Stephan */

Formula

G.f.: A(x) satisfies A(x) = 1+x*A(x)+x^2*A(x)^2+x^3*A(x)^3+x^4*A(x)^4. - Vladimir Kruchinin, Feb 22 2011
a(n) ~ sqrt(s/(1 + 3*r*s + 6*r^2*s^2)) / (2*n^(3/2)*sqrt(Pi)*r^(n+1)), where r = 0.2607944621478111633... and s = 2.176953284456253116... are roots of the system of equations r + 2*r^2*s + 3*r^3*s^2 + 4*r^4*s^3 = 1, 1 + r*s + r^2*s^2 + r^3*s^3 + r^4*s^4 = s. - Vaclav Kotesovec, Mar 13 2014
Conjecture: -3*(3*n+2)*(133*n-347)*(3*n+4)*(n+1)*a(n) +(111457*n^4-364730*n^3+228995*n^2+19310*n-33312)*a(n-1) +5*(-68503*n^4+34661
8*n^3-590627*n^2+397748*n-90564)*a(n-2) -25*(n-2)*(1933*n^3-9435*n^2+14354*n-7518)*a(n-3) -125*(n-2)*(n-3)*(1333*n^2-4384*n+2718)*
a(n-4) -625*(733*n-400)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Aug 04 2015

Extensions

Name clarified by Andrew Howroyd, Dec 04 2017

A295679 Array read by antidiagonals: T(n,k) = k-Modular Catalan numbers C_{n,k} (n >= 0, k > 0).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 8, 1, 1, 1, 2, 5, 13, 16, 1, 1, 1, 2, 5, 14, 35, 32, 1, 1, 1, 2, 5, 14, 41, 96, 64, 1, 1, 1, 2, 5, 14, 42, 124, 267, 128, 1, 1, 1, 2, 5, 14, 42, 131, 384, 750, 256, 1, 1, 1, 2, 5, 14, 42, 132, 420, 1210, 2123, 512, 1
Offset: 0

Views

Author

Andrew Howroyd, Nov 30 2017

Keywords

Comments

Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.
Columns of the array converge rowwise to A000108. The diagonal k=n-1 is A001453. - Andrey Zabolotskiy, Dec 02 2017

Examples

			Array begins (n >= 0, k > 0):
======================================================
n\k| 1   2    3    4    5    6    7    8    9   10
---|--------------------------------------------------
0  | 1   1    1    1    1    1    1    1    1    1 ...
1  | 1   1    1    1    1    1    1    1    1    1 ...
2  | 1   2    2    2    2    2    2    2    2    2 ...
3  | 1   4    5    5    5    5    5    5    5    5 ...
4  | 1   8   13   14   14   14   14   14   14   14 ...
5  | 1  16   35   41   42   42   42   42   42   42 ...
6  | 1  32   96  124  131  132  132  132  132  132 ...
7  | 1  64  267  384  420  428  429  429  429  429 ...
8  | 1 128  750 1210 1375 1420 1429 1430 1430 1430 ...
9  | 1 256 2123 3865 4576 4796 4851 4861 4862 4862 ...
...
		

Crossrefs

Programs

  • Maple
    A295679 := proc(n,k)
        if n = 0 then
            1;
        else
            add((-1)^j/n*binomial(n,j)*binomial(2*n-j*k,n+1),j=0..(n-1)/k) ;
        end if ;
    end proc:
    seq(seq( A295679(n,d-n),n=0..d-1),d=1..12) ; # R. J. Mathar, Oct 14 2022
  • Mathematica
    rows = cols = 12;
    col[k_] := Module[{G}, G = InverseSeries[x*(1-x)/(1-x^k) + O[x]^cols, x]; CoefficientList[1/(1 - G), x]];
    A = Array[col, cols];
    T[n_, k_] := A[[k, n+1]];
    Table[T[n-k+1, k], {n, 0, rows-1}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Dec 05 2017, adapted from PARI *)
  • PARI
    T(n,k)=polcoeff(1/(1-serreverse(x*(1-x)/(1-x^k) + O(x^max(2,n+1)))), n);
    for(n=0, 10, for(k=1, 10, print1(T(n, k), ", ")); print);

Formula

G.f. of column k: 1/(1-G(x)) where G(x) is the reversion of x*(1-x)/(1-x^k).

A203717 A Catalan triangle by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 4, 1, 1, 20, 15, 5, 1, 1, 50, 53, 21, 6, 1, 1, 126, 182, 84, 28, 7, 1, 1, 322, 616, 326, 120, 36, 8, 1, 1, 834, 2070, 1242, 495, 165, 45, 9, 1, 1, 2187, 6930, 4680, 1997, 715, 220, 55, 10, 1, 1, 5797, 23166, 17512, 7942, 3003, 1001, 286, 66, 11, 1
Offset: 1

Author

Gary W. Adamson, Jan 04 2012

Keywords

Comments

Row sums = the Catalan sequence starting with offset 1: (1, 2, 5, 14, 42,...).
T(n,k) is the number of Dyck n-paths whose maximum ascent length is k. - David Scambler, Aug 22 2012
T(n,k) is the number of ordered rooted trees with n non-root nodes and maximal outdegree k. T(4,3) = 4:
. o o o o
. | /|\ /|\ /|\
. o o o o o o o o o o
. /|\ | | |
. o o o o o o - Alois P. Heinz, Jun 29 2014
T(n,k) also is the number of permutations p of [n] such that in 0p the largest up-jump equals k and no down-jump is larger than 1. An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here. T(4,3) = 4: 1432, 3214, 3241, 3421. - Alois P. Heinz, Aug 29 2017

Examples

			First few rows of the array begin:
1,...1,...1,...1,...1,...;
1,...2,...4,...9,..21,...; = A001006
1,...2,...5,..13,..36,...; = A036765
1,...2,...5,..14,..41,...; = A036766
1,...2,...5,..14,..42,...; = A036767
... Taking finite differences of array terms starting from the top by columns, we obtain row terms of the triangle. First few rows of the triangle are:
  1;
  1,    1;
  1,    3,    1;
  1,    8,    4,    1;
  1,   20,   15,    5,    1;
  1,   50,   53,   21,    6,   1;
  1,  126,  182,   84,   28,   7,   1;
  1,  322,  616,  326,  120,  36,   8,  1;
  1,  834, 2070, 1242,  495, 165,  45,  9,  1;
  1, 2187, 6930, 4680, 1997, 715, 220, 55, 10, 1;
  ...
Example: Row 4 of the triangle = (1, 8, 4, 1) = the finite differences of (1, 9, 13, 14), column 4 of the array. Term (3,4) = 13 of the array is the upper left term of M^4, where M is an infinite square production matrix with four diagonals of 1's starting at (1,2), (1,1), (2,1), and (3,1); with the rest zeros.
		

Crossrefs

Columns k=1-3 give: A057427, A140662(n-1) for n>1, A303271.
T(2n,n) gives A291662.
T(2n+1,n+1) gives A005809.
T(n,ceiling(n/2)) gives A303259.

Programs

  • Maple
    b:= proc(n, t, k) option remember; `if`(n=0, 1, `if`(t>0,
          add(b(j-1, k$2)*b(n-j, t-1, k), j=1..n), b(n-1, k$2)))
        end:
    T:= (n, k)-> b(n, k-1$2) -`if`(k=1, 0, b(n, k-2$2)):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Jun 29 2014
    # second Maple program:
    b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, k), j=1..min(1, u))+
          add(b(u+j-1, o-j, k), j=1..min(k, o)))
        end:
    T:= (n, k)-> b(0, n, k)-`if`(k=0, 0, b(0, n, k-1)):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    b[n_, t_, k_] := b[n, t, k] = If[n == 0, 1, If[t > 0, Sum[b[j-1, k, k]*b[n - j, t-1, k], {j, 1, n}], b[n-1, k, k]]]; T[n_, k_] := b[n, k-1, k-1] - If[k == 1, 0, b[n, k-2, k-2]]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def b(u, o, k): return 1 if u + o==0 else sum([b(u - j, o + j - 1, k) for j in range(1, min(1, u) + 1)]) + sum([b(u + j - 1, o - j, k) for j in range(1, min(k, o) + 1)])
    def T(n, k): return b(0, n, k) - (0 if k==0 else b(0, n, k - 1))
    for n in range(1, 16): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Aug 30 2017

Formula

Finite differences of antidiagonals of an array in which n-th array row is generated from powers of M, extracting successive upper left terms. M for n-th row of the array is an infinite square production matrix composed of (n+1) diagonals of 1's and the rest zeros. Given the upper left term of the array is (1,1), the diagonals begin at (1,2), (1,1), (2,1), (3,1), (4,1),...
T(n,k) = A288942(n,k) - A288942(n,k-1). - Alois P. Heinz, Sep 01 2017

A036767 Number of ordered rooted trees with n non-root nodes and all outdegrees <= five.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 131, 421, 1385, 4642, 15795, 54418, 189454, 665471, 2355510, 8393461, 30084695, 108394449, 392356788, 1426137550, 5203211200, 19048447855, 69951072700, 257609070810, 951172531880, 3520465229446, 13058843476526, 48540377627407
Offset: 0

Keywords

Comments

Empirical: number of Dyck n-paths avoiding UUUUUU (or DDDDDD). e.g. of the 132 Dyck 6-paths U^6D^6 contains UUUUUU so a(6)=131. - David Scambler, Mar 24 2011
a(n) is the number of ordered unlabeled rooted trees on n+1 nodes where each node has no more than 5 children. - Geoffrey Critzer, Jan 05 2013

Crossrefs

Column k=5 of A288942.

Programs

  • Maple
    r := 5; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ];
    # second Maple program:
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1), j=1..min(1, u))+
          add(b(u+j-1, o-j), j=1..min(5, o)))
        end:
    a:= n-> b(0, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    nn=12;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[Series[0==f[x]-x -x f[x]-x f[x]^2-x f[x]^3-x f[x]^4- x f[x]^5,{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol  (* Geoffrey Critzer, Jan 05 2013 *)
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    a[n_] := b[0, n, 5];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x/sum(k=0,5,x^k)+O(x^(n+2))),n+1)) \\ Ralf Stephan

Formula

G.f. A(x) satisfies A(x) = 1 + sum(n=1..5, (x*A(x))^n). - Vladimir Kruchinin, Feb 22 2011

Extensions

Name clarified by Andrew Howroyd, Dec 04 2017

A036769 Number of ordered rooted trees with n non-root nodes and all outdegrees <= seven.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1429, 4852, 16730, 58422, 206192, 734332, 2635680, 9524301, 34622207, 126520393, 464517300, 1712650520, 6338433840, 23538973950, 87690410580, 327611738790, 1227178265182, 4607940112396, 17341126763366, 65395548619912
Offset: 0

Keywords

Crossrefs

Column k=7 of A288942.

Programs

  • Maple
    r := 7; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ];
    # second Maple program:
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1), j=1..min(1, u))+
          add(b(u+j-1, o-j), j=1..min(7, o)))
        end:
    a:= n-> b(0, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    b[u_, o_] := b[u, o] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j], {j, 1, Min[7, o]}]];
    a[n_] := b[0, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 27 2017, after Alois P. Heinz *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x/sum(k=0,7,x^k)+O(x^(n+2))),n+1)) /* Ralf Stephan */

Formula

G.f. A(x) satisfies: A(x) = 1 + Sum_{k=1..7} x^k*A(x)^k. - Ilya Gutkovskiy, May 03 2019

Extensions

Name clarified by Andrew Howroyd, Dec 04 2017

A036768 Number of ordered rooted trees with n non-root nodes and all outdegrees <= six.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 428, 1421, 4807, 16510, 57421, 201824, 715768, 2558167, 9204651, 33315919, 121218195, 443107245, 1626546453, 5993256280, 22158739970, 82182744284, 305670888560, 1139892935454, 4261095044346, 15964169665031, 59933390160322
Offset: 0

Keywords

Crossrefs

Column k=6 of A288942.

Programs

  • Maple
    r := 6; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ];
    # second Maple program:
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1), j=1..min(1, u))+
          add(b(u+j-1, o-j), j=1..min(6, o)))
        end:
    a:= n-> b(0, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    a[n_] := b[0, n, 6];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x/polcyclo(7)+O(x^(n+2))),n+1)) /* Ralf Stephan */

Formula

G.f. A(x) satisfies A(x)=1+sum(n=1..6, (x*A(x))^n). - Vladimir Kruchinin, Feb 22 2011

Extensions

Name clarified by Andrew Howroyd, Dec 04 2017

A291823 Number of ordered rooted trees with n non-root nodes and all outdegrees <= eight.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16785, 58708, 207557, 740520, 2662812, 9640581, 35112513, 128563215, 472951884, 1747233370, 6479450415, 24111470952, 90006390290, 336953657070, 1264770431964, 4758911027946, 17946417454046, 67818937355227, 256781370248500
Offset: 0

Author

Alois P. Heinz, Sep 01 2017

Keywords

Comments

Also the number of Dyck paths of semilength n with all ascent lengths <= eight.
Also the number of permutations p of [n] such that in 0p all up-jumps are <= eight and no down-jump is larger than 1. An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.
Differs from A000108 first at n = 9.

Crossrefs

Column k=8 of A288942.
Cf. A000108.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1), j=1..min(1, u))+
          add(b(u+j-1, o-j), j=1..min(8, o)))
        end:
    a:= n-> b(0, n):
    seq(a(n), n=0..30);
  • Mathematica
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    a[n_] := b[0, n, 8];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
  • PARI
    Vec(serreverse(x*(1-x)/(1-x*x^8) + O(x*x^25))) \\ Andrew Howroyd, Nov 29 2017

Formula

G.f.: G(x)/x where G(x) is the reversion of x*(1-x)/(1-x^9). - Andrew Howroyd, Nov 30 2017
G.f. A(x) satisfies: A(x) = 1 + Sum_{k=1..8} x^k*A(x)^k. - Ilya Gutkovskiy, May 03 2019
Showing 1-10 of 13 results. Next