cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A000669 Number of series-reduced planted trees with n leaves. Also the number of essentially series series-parallel networks with n edges; also the number of essentially parallel series-parallel networks with n edges.

Original entry on oeis.org

1, 1, 2, 5, 12, 33, 90, 261, 766, 2312, 7068, 21965, 68954, 218751, 699534, 2253676, 7305788, 23816743, 78023602, 256738751, 848152864, 2811996972, 9353366564, 31204088381, 104384620070, 350064856815, 1176693361956, 3963752002320
Offset: 1

Views

Author

Keywords

Comments

Also the number of unlabeled connected cographs on n nodes. - N. J. A. Sloane and Eric W. Weisstein, Oct 21 2003
A cograph is a simple graph which contains no path of length 3 as an induced subgraph. - Michael Somos, Apr 19 2014
Also called "hierarchies" by Genitrini (2016). - N. J. A. Sloane, Mar 24 2017

Examples

			G.f. = x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 33*x^6 + 90*x^7 + 261*x^8 + ...
a(4)=5 with the following series-reduced planted trees: (oooo), (oo(oo)), (o(ooo)), (o(o(oo))), ((oo)(oo)). - _Michael Somos_, Jul 25 2003
		

References

  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 43.
  • A. Brandstaedt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, SIAM Publications, 1999. (For definition of cograph)
  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 3, p. 246.
  • D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, p. 589, Answers to Exercises Section 2.3.4.4 5.
  • L. F. Meyers, Corrections and additions to Tree Representations in Linguistics. Report 3, 1966, p. 138. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
  • L. F. Meyers and W. S.-Y. Wang, Tree Representations in Linguistics. Report 3, 1963, pp. 107-108. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
  • J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93 (the numbers called a_n in this paper). Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals (1/2)*A000084 for n >= 2.
Cf. A000311, labeled hierarchies on n points.
Column 1 of A319254.
Main diagonal of A292085.
Row sums of A292086.

Programs

  • Maple
    Method 1: a := [1,1]; for n from 3 to 30 do L := series( mul( (1-x^k)^(-a[k]),k=1..n-1)/(1-x^n)^b, x,n+1); t1 := coeff(L,x,n); R := series( 1+2*add(a[k]*x^k,k=1..n-1)+2*b*x^n, x, n+1); t2 := coeff(R,x,n); t3 := solve(t1-t2,b); a := [op(a),t3]; od: A000669 := n-> a[n];
    Method 2, more efficient: with(numtheory): M := 1001; a := array(0..M); p := array(0..M); a[1] := 1; a[2] := 1; a[3] := 2; p[1] := 1; p[2] := 3; p[3] := 7;
    Method 2, cont.: for m from 4 to M do t1 := divisors(m); t3 := 0; for d in t1 minus {m} do t3 := t3+d*a[d]; od: t4 := p[m-1]+2*add(p[k]*a[m-k],k=1..m-2)+t3; a[m] := t4/m; p[m] := t3+t4; od: # A000669 := n-> a[n]; A058757 := n->p[n];
    # Method 3:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(a(i)+j-1, j)*
           b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, b(n, n-1)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jan 28 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i]+j-1, j]* b[n-i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n<2, n, b[n, n-1]];
    Array[a, 40] (* Jean-François Alcover, Jan 08 2021, after Alois P. Heinz *)
  • PARI
    {a(n) = my(A, X); if( n<2, n>0, X = x + x * O(x^n); A = 1 / (1 - X); for(k=2, n, A /= (1 - X^k)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Jul 25 2003 */
    
  • Sage
    from collections import Counter
    def A000669_list(n):
        list = [1] + [0] * (n - 1)
        for i in range(1, n):
            for p in Partitions(i + 1, min_length=2):
                m = Counter(p)
                list[i] += prod(binomial(list[s - 1] + m[s] - 1, m[s]) for s in m)
        return list
    print(A000669_list(20)) # M. Eren Kesim, Jun 21 2021

Formula

Product_{k>0} 1/(1-x^k)^a_k = 1+x+2*Sum_{k>1} a_k*x^k.
a(n) ~ c * d^n / n^(3/2), where d = 3.560839309538943329526129172709667..., c = 0.20638144460078903185013578707202765... [Ravelomanana and Thimonier, 2001]. - Vaclav Kotesovec, Aug 25 2014
Consider a nontrivial partition p of n. For each size s of a part occurring in p, compute binomial(a(s)+m-1, m) where m is the multiplicity of s. Take the product of this expression over all s. Take the sum of this new expression over all p to obtain a(n). - Thomas Anton, Nov 22 2018

Extensions

Sequence crossreference fixed by Sean A. Irvine, Sep 15 2009

A001190 Wedderburn-Etherington numbers: unlabeled binary rooted trees (every node has outdegree 0 or 2) with n endpoints (and 2n-1 nodes in all).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, 127912, 293547, 676157, 1563372, 3626149, 8436379, 19680277, 46026618, 107890609, 253450711, 596572387, 1406818759, 3323236238, 7862958391, 18632325319, 44214569100, 105061603969
Offset: 0

Views

Author

Keywords

Comments

Also number of n-node binary rooted trees (every node has outdegree <= 2) where root has degree 0 (only for n=1) or 1.
a(n+1) is the number of rooted trees with n nodes where the outdegree of every node is <= 2, see example. These trees are obtained by removing the root of the trees in the comment above. - Joerg Arndt, Jun 29 2014
Number of interpretations of x^n (or number of ways to insert parentheses) when multiplication is commutative but not associative. E.g., a(4) = 2: x(x*x^2) and x^2*x^2. a(5) = 3: (x*x^2)x^2, x(x*x*x^2) and x(x^2*x^2). [If multiplication is non-commutative then the answer is A000108(n-1). - Jianing Song, Apr 29 2022]
Number of ways to place n stars in a single bound stable hierarchical multiple star system; i.e., taking only the configurations from A003214 where all stars are included in single outer parentheses. - Piet Hut, Nov 07 2003
Number of colorations of Kn (complete graph of order n) with n-1 colors such that no triangle is three-colored. Two edge-colorations C1 and C2 of G are isomorphic iff exists an automorphism f (isomorphism between G an G) such that: f sends same-colored edges of C1 on same-colored edges of C2 and f^(-1) sends same-colored edges of C2 on same-colored edges of C1. - Abraham Gutiérrez, Nov 12 2012
For n>1, a(n) is the number of (not necessarily distinct) unordered pairs of free unlabeled trees having a total of n nodes. See the first entry in formula section. - Geoffrey Critzer, Nov 09 2014
Named after the English mathematician Ivor Etherington (1908-1994) and the Scottish mathematician Joseph Wedderburn (1882-1948). - Amiram Eldar, May 29 2021

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + ...
From _Joerg Arndt_, Jun 29 2014: (Start)
The a(6+1) = 11 rooted trees with 6 nodes as described in the comment are:
:           level sequence       outdegrees (dots for zeros)
:     1:  [ 0 1 2 3 4 5 ]    [ 1 1 1 1 1 . ]
:  O--o--o--o--o--o
:
:     2:  [ 0 1 2 3 4 4 ]    [ 1 1 1 2 . . ]
:  O--o--o--o--o
:           .--o
:
:     3:  [ 0 1 2 3 4 3 ]    [ 1 1 2 1 . . ]
:  O--o--o--o--o
:        .--o
:
:     4:  [ 0 1 2 3 4 2 ]    [ 1 2 1 1 . . ]
:  O--o--o--o--o
:     .--o
:
:     5:  [ 0 1 2 3 4 1 ]    [ 2 1 1 1 . . ]
:  O--o--o--o--o
:  .--o
:
:     6:  [ 0 1 2 3 3 2 ]    [ 1 2 2 . . . ]
:  O--o--o--o
:        .--o
:     .--o
:
:     7:  [ 0 1 2 3 3 1 ]    [ 2 1 2 . . . ]
:  O--o--o--o
:        .--o
:  .--o
:
:     8:  [ 0 1 2 3 2 3 ]    [ 1 2 1 . 1 . ]
:  O--o--o--o
:     .--o--o
:
:     9:  [ 0 1 2 3 2 1 ]    [ 2 2 1 . . . ]
:  O--o--o--o
:     .--o
:  .--o
:
:    10:  [ 0 1 2 3 1 2 ]    [ 2 1 1 . 1 . ]
:  O--o--o--o
:  .--o--o
:
:    11:  [ 0 1 2 2 1 2 ]    [ 2 2 . . 1 . ]
:  O--o--o
:     .--o
:  .--o--o
:
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 55.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
  • A. Gutiérrez-Sánchez, Shen-colored tournaments, thesis, UNAM, 2012.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.52.
  • Richard P. Stanley, Catalan Numbers, Cambridge, 2015, p. 133.

Crossrefs

Column k=2 of A292085 and of A299038.
Column k=1 of A319539 and of A319541.

Programs

  • Maple
    A001190 := proc(n) option remember; local s,k; if n<=1 then RETURN(n); elif n <=3 then RETURN(1); else s := 0; if n mod 2 = 0 then s := A001190(n/2)*(A001190(n/2)+1)/2; for k from 1 to n/2-1 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); else for k from 1 to (n-1)/2 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); fi; fi; end;
    N := 40: G001190 := add(A001190(n)*x^n,n=0..N);
    spec := [S,{S=Union(Z,Prod(Z,Set(S,card=2)))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    # alternative Maple program:
    a:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(a(n/2)))+add(a(i)*a(n-i), i=1..n/2))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    terms = 35; A[] = 0; Do[A[x] = x + (1/2)*(A[x]^2 + A[x^2]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Jul 22 2011, updated Jan 10 2018 *)
    a[n_?OddQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, (n-1)/2}]; a[n_?EvenQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, n/2-1}] + (1/2)*a[n/2]*(1+a[n/2]); a[0]=0; a[1]=1; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jun 13 2012, after recurrence formula *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Nest[ 1 - Sqrt[1 - 2 x - (# /. x -> x^2)] &, 0, BitLength @ n], {x, 0, n}]]; (* Michael Somos, Apr 25 2013 *)
  • PARI
    {a(n) = local(A, m); if( n<0, 0, m=1; A = O(x); while( m<=n, m*=2; A = 1 - sqrt(1 - 2*x - subst(A, x, x^2))); polcoeff(A, n))}; /* Michael Somos, Sep 06 2003 */
    
  • PARI
    {a(n) = local(A); if( n<4, n>0, A = vector(n, i, 1); for( i=4, n, A[i] = sum( j=1, (i-1)\2, A[j] * A[i-j]) + if( i%2, 0, A[i/2] * (A[i/2] + 1)/2)); A[n])}; /* Michael Somos, Mar 25 2006 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A001190(n):
        if n <= 1: return n
        m = n//2 + n % 2
        return sum(A001190(i+1)*A001190(n-1-i) for i in range(m-1)) + (1 - n % 2)*A001190(m)*(A001190(m)+1)//2 # Chai Wah Wu, Jan 14 2022

Formula

G.f. satisfies A(x) = x + (1/2)*(A(x)^2 + A(x^2)) [de Bruijn and Klarner].
G.f. also satisfies A(x) = 1 - sqrt(1 - 2*x - A(x^2)). - Michael Somos, Sep 06 2003
a(2n-1) = a(1)a(2n-2) + a(2)a(2n-3) + ... + a(n-1)a(n), a(2n) = a(1)a(2n-1) + a(2)a(2n-2) + ... + a(n-1)a(n+1) + a(n)(a(n)+1)/2.
Given g.f. A(x), then B(x) = -1 + A(x) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = (u^2 + v)^2 + 2*(v^2 + w). - Michael Somos, Oct 22 2006
The radius of convergence of the g.f. is A240943 = 1/A086317 ~ 0.4026975... - Jean-François Alcover, Jul 28 2014, after Steven R. Finch.
a(n) ~ A086318 * A086317^(n-1) / n^(3/2). - Vaclav Kotesovec, Apr 19 2016

A292086 Number T(n,k) of (unlabeled) rooted trees with n leaf nodes and without unary nodes such that k is the maximum of 1 and the node outdegrees; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 2, 1, 0, 6, 17, 7, 2, 1, 0, 11, 47, 22, 7, 2, 1, 0, 23, 133, 72, 23, 7, 2, 1, 0, 46, 380, 230, 77, 23, 7, 2, 1, 0, 98, 1096, 751, 256, 78, 23, 7, 2, 1, 0, 207, 3186, 2442, 861, 261, 78, 23, 7, 2, 1, 0, 451, 9351, 8006, 2897, 887, 262, 78, 23, 7, 2, 1
Offset: 1

Views

Author

Alois P. Heinz, Sep 08 2017

Keywords

Examples

			:   T(4,2) = 2        :   T(4,3) = 2      : T(4,4) = 1 :
:                     :                   :            :
:       o       o     :      o       o    :     o      :
:      / \     / \    :     / \     /|\   :   /( )\    :
:     o   N   o   o   :    o   N   o N N  :  N N N N   :
:    / \     ( ) ( )  :   /|\     ( )     :            :
:   o   N    N N N N  :  N N N    N N     :            :
:  ( )                :                   :            :
:  N N                :                   :            :
:                     :                   :            :
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,   1;
  0,  2,   2,   1;
  0,  3,   6,   2,  1;
  0,  6,  17,   7,  2,  1;
  0, 11,  47,  22,  7,  2, 1;
  0, 23, 133,  72, 23,  7, 2, 1;
  0, 46, 380, 230, 77, 23, 7, 2, 1;
  ...
		

Crossrefs

Columns k=1-10 give: A063524, A001190 (for n>1), A292229, A292230, A292231, A292232, A292233, A292234, A292235, A292236.
Row sums give A000669.
Limit of reversed rows gives A292087.

Programs

  • Maple
    b:= proc(n, i, v, k) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n A(n, k)-`if`(k=1, 0, A(n, k-1)):
    seq(seq(T(n, k), k=1..n), n=1..15);
  • Mathematica
    b[n_, i_, v_, k_] := b[n, i, v, k] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, If[v == n, 1, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, v - j, k], {j, 0, Min[n/i, v]}]]]];
    A[n_, k_] := A[n, k] = If[n < 2, n, Sum[b[n, n + 1 - j, j, k], {j, 2, Min[n, k]}]];
    T[n_, k_] := A[n, k] - If[k == 1, 0, A[n, k - 1]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)

Formula

T(n,k) = A292085(n,k) - A292085(n,k-1) for k>2, T(n,1) = A292085(n,1).

A268172 Binary-ternary Wedderburn-Etherington numbers.

Original entry on oeis.org

0, 1, 1, 2, 4, 9, 23, 58, 156, 426, 1194, 3393, 9802, 28601, 84347, 250732, 750908, 2262817, 6857386, 20882889, 63877262, 196162762, 604567254, 1869318719, 5797113028, 18026873112, 56197262814, 175594836698, 549839459963, 1725126992844, 5422602630117, 17074281639963, 53848886560675, 170085320026578
Offset: 0

Views

Author

Murray R. Bremner, Jan 27 2016

Keywords

Comments

This is the number of non-planar binary-ternary rooted trees (every node has out-degree 0 or 2 or 3) with n leaf nodes, indexed by the number of leaf nodes (NOT the total number of nodes).
It can also be interpreted as the number of bracketings (valid placements of operation symbols) in a monomial of degree n in a nonassociative algebra with an (anti-)commutative binary operation and a completely (skew-)symmetric ternary operation.

Examples

			Here are the 1, 1, 2, 4, 9, 23 bracketings for degrees 1 to 6 (using the monomial interpretation), where the binary and ternary operations are written [-,-] and [-,-,-] respectively, and the hyphen is a placeholder for the argument symbols:
Degree 1: -.
Degree 2: [-,-].
Degree 3: [[-,-],-], [-,-,-].
Degree 4: [[[-,-],-],-], [[-,-],[-,-]], [[-,-,-],-], [[-,-],-,-].
Degree 5:
   [[[[-,-],-],-],-],
   [[[-,-,-],-],-],
   [[[-,-],[-,-]],-],
   [[[-,-],-,-],-],
   [[[-,-],-],[-,-]],
   [[-,-,-],[-,-]],
   [[[-,-],-],-,-],
   [[-,-,-],-,-],
   [[-,-],[-,-],-].
Degree 6:
   [[[[[-,-],-],-],-],-],
   [[[[-,-,-],-],-],-],
   [[[[-,-],[-,-]],-],-],
   [[[[-,-],-,-],-],-],
   [[[[-,-],-],[-,-]],-],
   [[[-,-,-],[-,-]],-],
   [[[[-,-],-],-,-],-],
   [[[-,-,-],-,-],-],
   [[[-,-], [-,-],-],-],
   [[[[-,-],-],-],[-,-]],
   [[[-,-,-],-],[-,-]],
   [[[-,-], [-,-]],[-,-]],
   [[[-,-],-,-],[-,-]],
   [[[-,-],-],[[-,-],-]],
   [[[-,-],-],[-,-,-]],
   [[-,-,-],[-,-,-]],
   [[[[-,-],-],-],-,-],
   [[[-,-,-],-],-,-],
   [[[-,-],[-,-]],-,-],
   [[[-,-],-,-],-,-],
   [[[-,-],-],[-,-],-],
   [[-,-,-],[-,-],-],
   [[-,-],[-,-],[-,-]].
		

Crossrefs

Cf. A001190 (Binary Wedderburn-Etherington numbers).
Cf. A000598 (Ternary Wedderburn-Etherington numbers: number of non-planar ternary rooted trees with n nodes): note that this sequence is indexed by the total number of nodes, NOT the number of leaves.
Column k=3 of A292085.

Programs

  • Maple
    # for first Maple program see Links
    # second Maple program:
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or nAlois P. Heinz, Jan 28 2016
  • Mathematica
    b[n_, i_, v_] := b[n, i, v] = If[n==0, If[v==0, 1, 0], If[i<1 || v<1 || nJean-François Alcover, Feb 25 2017, after Alois P. Heinz *)

Formula

See Maple code, and the recursion formula under Links.

A292210 Number of (unlabeled) rooted trees with n leaf nodes and without unary nodes or outdegrees larger than four.

Original entry on oeis.org

0, 1, 1, 2, 5, 11, 30, 80, 228, 656, 1945, 5835, 17808, 54881, 170951, 536726, 1697774, 5403629, 17295686, 55630538, 179726346, 582942079, 1897565974, 6196973039, 20297954197, 66666192488, 219505550167, 724415274090, 2395838962114, 7939424272536
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2017

Keywords

Crossrefs

Column k=4 of A292085.

Programs

  • Maple
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n
    				

A292211 Number of (unlabeled) rooted trees with n leaf nodes and without unary nodes or outdegrees larger than five.

Original entry on oeis.org

0, 1, 1, 2, 5, 12, 32, 87, 251, 733, 2201, 6696, 20705, 64681, 204183, 649738, 2082939, 6719063, 21796084, 71052001, 232645645, 764768959, 2523033061, 8350789334, 27721841968, 92277902858, 307935654094, 1029970333229, 3452371784462, 11595031966743
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2017

Keywords

Crossrefs

Column k=5 of A292085.

Programs

  • Maple
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n
    				

A292212 Number of (unlabeled) rooted trees with n leaf nodes and without unary nodes or outdegrees larger than six.

Original entry on oeis.org

0, 1, 1, 2, 5, 12, 33, 89, 258, 756, 2279, 6957, 21592, 67689, 214451, 684850, 2203384, 7133042, 23222003, 75971636, 249646198, 823597534, 2726859943, 9057797752, 30176758016, 100810029178, 337614951216, 1133292965615, 3812333876764, 12849946139206
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2017

Keywords

Crossrefs

Column k=6 of A292085.

Programs

  • Maple
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n
    				

A292213 Number of (unlabeled) rooted trees with n leaf nodes and without unary nodes or outdegrees larger than seven.

Original entry on oeis.org

0, 1, 1, 2, 5, 12, 33, 90, 260, 763, 2302, 7035, 21854, 68581, 217485, 695229, 2238965, 7255380, 23643501, 77426852, 254678757, 841028918, 2787320206, 9267764857, 30906754731, 103350631437, 346465277423, 1164150100182, 3920004155435, 13225916804136
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2017

Keywords

Crossrefs

Column k=7 of A292085.

Programs

  • Maple
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n
    				

A292214 Number of (unlabeled) rooted trees with n leaf nodes and without unary nodes or outdegrees larger than eight.

Original entry on oeis.org

0, 1, 1, 2, 5, 12, 33, 90, 261, 765, 2309, 7058, 21932, 68843, 218378, 698268, 2249370, 7291072, 23766308, 77850244, 256141505, 846090860, 2804864997, 9328658392, 31118365152, 104086821258, 349029100890, 1173087112579, 3951183698640, 13334782347941
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2017

Keywords

Crossrefs

Column k=8 of A292085.

Programs

  • Maple
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n
    				

A292215 Number of (unlabeled) rooted trees with n leaf nodes and without unary nodes or outdegrees larger than nine.

Original entry on oeis.org

0, 1, 1, 2, 5, 12, 33, 90, 261, 766, 2311, 7065, 21955, 68921, 218640, 699161, 2252410, 7301482, 23802026, 77973162, 256565366, 847555502, 2809934472, 9346232579, 31179372180, 104298865434, 349766936468, 1175657140783, 3960143985167, 13366048810561
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2017

Keywords

Crossrefs

Column k=9 of A292085.

Programs

  • Maple
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n
    				
Showing 1-10 of 11 results. Next