A000669 Number of series-reduced planted trees with n leaves. Also the number of essentially series series-parallel networks with n edges; also the number of essentially parallel series-parallel networks with n edges.
1, 1, 2, 5, 12, 33, 90, 261, 766, 2312, 7068, 21965, 68954, 218751, 699534, 2253676, 7305788, 23816743, 78023602, 256738751, 848152864, 2811996972, 9353366564, 31204088381, 104384620070, 350064856815, 1176693361956, 3963752002320
Offset: 1
Examples
G.f. = x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 33*x^6 + 90*x^7 + 261*x^8 + ... a(4)=5 with the following series-reduced planted trees: (oooo), (oo(oo)), (o(ooo)), (o(o(oo))), ((oo)(oo)). - _Michael Somos_, Jul 25 2003
References
- N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 43.
- A. Brandstaedt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, SIAM Publications, 1999. (For definition of cograph)
- A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 3, p. 246.
- D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, p. 589, Answers to Exercises Section 2.3.4.4 5.
- L. F. Meyers, Corrections and additions to Tree Representations in Linguistics. Report 3, 1966, p. 138. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
- L. F. Meyers and W. S.-Y. Wang, Tree Representations in Linguistics. Report 3, 1963, pp. 107-108. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
- J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93 (the numbers called a_n in this paper). Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, First 1001 terms of A000669
- Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, and Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture, arXiv:1907.01073 [math.CO], 2019.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. MR0891613 (89a:05009). See pp. 155, 162, 165, 172. - _N. J. A. Sloane_, Apr 18 2014
- Peter J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- Maria Chudnovsky, Jan Goedgebeur, Oliver Schaudt, and Mingxian Zhong, Obstructions for three-coloring graphs without induced paths on six vertices, arXiv preprint arXiv:1504.06979 [math.CO], 2015-2018.
- Steven R. Finch, Series-parallel networks
- Steven R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- Philippe Flajolet, A Problem in Statistical Classification Theory
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 72
- Daniel L. Geisler, Combinatorics of Iterated Functions
- A. Genitrini, Full asymptotic expansion for Polya structures, arXiv:1605.00837 [math.CO], May 03 2016, p. 9.
- O. Golinelli, Asymptotic behavior of two-terminal series-parallel networks, arXiv:cond-mat/9707023 [cond-mat.stat-mech], 1997.
- JiSun Huh and Seonjeong Park, Toric varieties of Schröder type, arXiv:2204.00214 [math.AG], 2022. (Table 1)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 44 [broken link].
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012. - From _N. J. A. Sloane_, Dec 22 2012
- P. A. MacMahon, Yoke-trains and multipartite compositions in connexion with the analytical forms called "trees", Proc. London Math. Soc. 22 (1891), 330-346; reprinted in Coll. Papers I, pp. 600-616. Page 333 gives A000084 = 2*A000669.
- Arnau Mir, Francesc Rossello, and Lucia Rotger, Sound Colless-like balance indices for multifurcating trees, arXiv:1805.01329 [q-bio.PE], 2018.
- V. Modrak and D. Marton, Development of Metrics and a Complexity Scale for the Topology of Assembly Supply Chains, Entropy 2013, 15, 4285-4299.
- J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226.
- Vlady Ravelomanana and Loys Thimonier, Asymptotic enumeration of cographs, Electronic Notes in Discrete Mathematics, Volume 7, April 2001, pp. 58-61, Theorem 4.
- J. Riordan, The blossoming of Schröder's fourth problem, Acta Math., 137 (1976), 1-16. (page 6)
- J. Riordan, Letter to N. J. A. Sloane, Sep. 1970
- J. Riordan, Letter to N. J. A. Sloane, Nov 10 1970
- Audace Amen Vioutou Dossou-Olory, and Stephan Wagner, Inducibility of Topological Trees, arXiv:1802.06696 [math.CO], 2018.
- Audace Amen Vioutou Dossou-Olory, The topological trees with extremal Matula numbers, arXiv:1806.03995 [math.CO], 2018.
- Wei Wang and Ximei Huang, Almost all cographs have a cospectral mate, arXiv:2507.16730 [math.CO], 2025. See pp. 6, 8.
- Eric Weisstein's World of Mathematics, Series-Parallel Network
- Index entries for sequences related to rooted trees
- Index entries for sequences mentioned in Moon (1987)
- Index entries for sequences related to trees
Crossrefs
Programs
-
Maple
Method 1: a := [1,1]; for n from 3 to 30 do L := series( mul( (1-x^k)^(-a[k]),k=1..n-1)/(1-x^n)^b, x,n+1); t1 := coeff(L,x,n); R := series( 1+2*add(a[k]*x^k,k=1..n-1)+2*b*x^n, x, n+1); t2 := coeff(R,x,n); t3 := solve(t1-t2,b); a := [op(a),t3]; od: A000669 := n-> a[n]; Method 2, more efficient: with(numtheory): M := 1001; a := array(0..M); p := array(0..M); a[1] := 1; a[2] := 1; a[3] := 2; p[1] := 1; p[2] := 3; p[3] := 7; Method 2, cont.: for m from 4 to M do t1 := divisors(m); t3 := 0; for d in t1 minus {m} do t3 := t3+d*a[d]; od: t4 := p[m-1]+2*add(p[k]*a[m-k],k=1..m-2)+t3; a[m] := t4/m; p[m] := t3+t4; od: # A000669 := n-> a[n]; A058757 := n->p[n]; # Method 3: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i)+j-1, j)* b(n-i*j, i-1), j=0..n/i))) end: a:= n-> `if`(n<2, n, b(n, n-1)): seq(a(n), n=1..40); # Alois P. Heinz, Jan 28 2016
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i]+j-1, j]* b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<2, n, b[n, n-1]]; Array[a, 40] (* Jean-François Alcover, Jan 08 2021, after Alois P. Heinz *)
-
PARI
{a(n) = my(A, X); if( n<2, n>0, X = x + x * O(x^n); A = 1 / (1 - X); for(k=2, n, A /= (1 - X^k)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Jul 25 2003 */
-
Sage
from collections import Counter def A000669_list(n): list = [1] + [0] * (n - 1) for i in range(1, n): for p in Partitions(i + 1, min_length=2): m = Counter(p) list[i] += prod(binomial(list[s - 1] + m[s] - 1, m[s]) for s in m) return list print(A000669_list(20)) # M. Eren Kesim, Jun 21 2021
Formula
Product_{k>0} 1/(1-x^k)^a_k = 1+x+2*Sum_{k>1} a_k*x^k.
a(n) ~ c * d^n / n^(3/2), where d = 3.560839309538943329526129172709667..., c = 0.20638144460078903185013578707202765... [Ravelomanana and Thimonier, 2001]. - Vaclav Kotesovec, Aug 25 2014
Consider a nontrivial partition p of n. For each size s of a part occurring in p, compute binomial(a(s)+m-1, m) where m is the multiplicity of s. Take the product of this expression over all s. Take the sum of this new expression over all p to obtain a(n). - Thomas Anton, Nov 22 2018
Extensions
Sequence crossreference fixed by Sean A. Irvine, Sep 15 2009
Comments