cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A292085 Number A(n,k) of (unlabeled) rooted trees with n leaf nodes and without unary nodes or outdegrees larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 4, 3, 0, 1, 1, 2, 5, 9, 6, 0, 1, 1, 2, 5, 11, 23, 11, 0, 1, 1, 2, 5, 12, 30, 58, 23, 0, 1, 1, 2, 5, 12, 32, 80, 156, 46, 0, 1, 1, 2, 5, 12, 33, 87, 228, 426, 98, 0, 1, 1, 2, 5, 12, 33, 89, 251, 656, 1194, 207, 0
Offset: 1

Views

Author

Alois P. Heinz, Sep 08 2017

Keywords

Examples

			:               T(4,3) = 4             :
:                                      :
:       o       o         o       o    :
:      / \     / \       / \     /|\   :
:     o   N   o   o     o   N   o N N  :
:    / \     ( ) ( )   /|\     ( )     :
:   o   N    N N N N  N N N    N N     :
:  ( )                                 :
:  N N                                 :
:                                      :
Square array A(n,k) begins:
  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,   2,   2,   2,   2,   2,   2, ...
  0,  2,   4,   5,   5,   5,   5,   5, ...
  0,  3,   9,  11,  12,  12,  12,  12, ...
  0,  6,  23,  30,  32,  33,  33,  33, ...
  0, 11,  58,  80,  87,  89,  90,  90, ...
  0, 23, 156, 228, 251, 258, 260, 261, ...
		

Crossrefs

Main diagonal gives A000669.

Programs

  • Maple
    b:= proc(n, i, v, k) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n
    				
  • Mathematica
    b[n_, i_, v_, k_] := b[n, i, v, k] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, If[v == n, 1, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, v - j, k], {j, 0, Min[n/i, v]}]]]];
    A[n_, k_] := A[n, k] = If[n < 2, n, Sum[b[n, n + 1 - j, j, k], {j, 2, Min[n, k]}]];
    Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=1..k} A292086(n,j).

A268163 Number of labeled binary-ternary rooted non-planar trees, indexed by number of leaves.

Original entry on oeis.org

0, 1, 1, 4, 25, 220, 2485, 34300, 559405, 10525900, 224449225, 5348843500, 140880765025, 4063875715900, 127418482316125, 4314607214417500, 156920190449147125, 6100643259005795500, 252476539015516440625, 11081983532721088487500, 514215436341672155715625
Offset: 0

Views

Author

Murray R. Bremner, Jan 27 2016

Keywords

Comments

This can also be interpreted as the number of multilinear monomials of degree n in a nonassociative algebra with an (anti)commutative binary operation and a completely (skew-)symmetric ternary operation; the number of variables in the monomial corresponds to the number of leaves in the tree.
This sequence also enumerates a certain class of Feynman diagrams; see the references, links, and crossrefs below.

Examples

			For n = 4 and using the monomial interpretation, the 25 multilinear monomials of degree 4 are as follows, where [-,-] is the binary operation and (-,-,-) is the ternary operation:
[[[a,b],c],d], [[[a,b],d],c], [[[a,c],b],d], [[[a,c],d],b], [[[a,d],b],c], [[[a,d],c],b], [[[b,c],a],d], [[[b,c],d],a], [[[b,d],a],c], [[[b,d],c],a], [[[c,d],a],b], [[[c,d],b],a], [[a,b],[c,d]], [[a,c],[b,d]], [[a,d],[b,c]], [(a,b,c),d], [(a,b,d),c], [(a,c,d),b], [(b,c,d),a], ([a,b],c,d), ([a,c],b,d), ([a,d],b,c), ([b,c],a,d), ([b,d],a,c), ([c,d],a,b).
		

References

  • J. Bedford, On Perturbative Field Theory and Twistor String Theory, Ph.D. Thesis, 2007, Queen Mary, University of London.
  • B. Feng and M. Luo, An introduction to on-shell recursion relations, Review Article, Frontiers of Physics, October 2012, Volume 7, Issue 5, pp. 533-575.
  • K. Kampf, A new look at the nonlinear sigma model, 17th International Conference in Quantum Chromodynamics (QCD 14), Nuclear and Particle Physics Proceedings, Volumes 258-259, January-February 2015, pp. 86-89.
  • M. L. Mangano and S. J. Parke, Multi-parton amplitudes in gauge theories, Physics Reports, Volume 200, Issue 6, February 1991, pp. 301-367.

Crossrefs

Cf. A001147. The number of labeled binary rooted non-planar trees.
Cf. A025035. The number of labeled ternary rooted non-planar trees.
Cf. A268172. The corresponding number of unlabelled trees.
Cf. A005411. Number of non-vanishing Feynman diagrams of order 2n for the electron or the photon propagators in quantum electrodynamics.
Cf. A005412. Number of non-vanishing Feynman diagrams of order 2n for the vacuum polarization (the proper two-point function of the photon) and for the self-energy (the proper two-point function of the electron) in quantum electrodynamics (QED).
Cf. A005413. Number of non-vanishing Feynman diagrams of order 2n+1 for the electron-electron-photon proper vertex function in quantum electrodynamics (QED).
Cf. A005414. Feynman diagrams of order 2n with vertex skeletons.
Other sequences related to Feynman diagrams: A115974, A122023, A167872, A214298, A214299.
Cf. A000311.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or nAlois P. Heinz, Jan 28 2016
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, [0, 1$2][n+1],
           ((24*n-36)*a(n-1)+(3*n-5)*(3*n-7)*a(n-2))/11)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 28 2016
  • Mathematica
    a[0]=0; a[1]=1; a[2]=1; a[n_]:=a[n]=(12(2n-3)a[n-1]+(3n-5)(3n-7)a[n-2])/11; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Formula

a(n) = ((24*n-36)*a(n-1)+(3*n-5)*(3*n-7)*a(n-2))/11 for n>2. - Alois P. Heinz, Jan 28 2016
Because of Koszul duality for operads, the exponential generating function is the compositional inverse of the power series x-x^2/2-x^3/6 (email of Vladimir Dotsenko to Murray R. Bremner, Jan 28 2016).
a(n) ~ sqrt(9-4*sqrt(3)) * ((12+9*sqrt(3))/11)^n * n^(n-1) / (3 * exp(n)). - Vaclav Kotesovec, Feb 24 2016

A276277 Association types for monomials with n arguments in an algebra with two binary operations, one commutative, one noncommutative.

Original entry on oeis.org

1, 2, 6, 25, 111, 540, 2736, 14396, 77649, 427608, 2392866, 13570386, 77815161, 450418536, 2628225684, 15443406868, 91301938365, 542704450806, 3241411991712, 19443499011192, 117084197728737, 707532791560272, 4289252607915012, 26078561954153631
Offset: 1

Views

Author

Murray R. Bremner, Aug 26 2016

Keywords

Comments

a(n) is the number of complete rooted binary trees with n leaves in which the internal nodes are labeled either white or black; the two children (subtrees) of a white node have no specified orientation, but the two children (subtrees) of a black node are labeled left and right. Thus the notion of isomorphism for these trees is partly planar (for the black nodes) and partly abstract (for the white nodes).
Finding a recurrence relation is an easy exercise. Finding an exact formula is probably very difficult or even impossible: compare the OEIS page for A001190 (Wedderburn-Etherington numbers).

Examples

			For n = 4 the 25 association types are as follows, where * is commutative and # is noncommutative; some assumptions have been made regarding the order of the factors for the commutative operation:
( ( X * X ) * X ) * X,
( ( X # X ) * X ) * X,
( ( X * X ) # X ) * X,
( ( X # X ) # X ) * X,
( X # ( X * X ) ) * X,
( X # ( X # X ) ) * X,
( X * X ) * ( X * X ),
( X * X ) * ( X # X ),
( X # X ) * ( X # X ),
( ( X * X ) * X ) # X,
( ( X # X ) * X ) # X,
( ( X * X ) # X ) # X,
( ( X # X ) # X ) # X,
( X # ( X * X ) ) # X,
( X # ( X # X ) ) # X,
( X * X ) # ( X * X ),
( X * X ) # ( X # X ),
( X # X ) # ( X * X ),
( X # X ) # ( X # X ),
X # ( ( X * X ) * X ),
X # ( ( X # X ) * X ),
X # ( ( X * X ) # X ),
X # ( ( X # X ) # X ),
X # ( X # ( X * X ) ),
X # ( X # ( X # X ) ).
		

Crossrefs

Programs

  • Maple
    BWT := table():
    BWT[ 1 ] := 1:
    for arity from 2 to 24 do
      BWT[ arity ] := 0:
      # commutative operation
      for i to floor((arity-1)/2) do
        BWT[ arity ] := BWT[ arity ] + ( BWT[arity-i] * BWT[i] )
      od:
      if arity mod 2 = 0 then
        BWT[ arity ] := BWT[ arity ] + binomial( BWT[arity/2]+1, 2 )
      fi:
      # noncommutative operation
      for i to arity-1 do
        BWT[ arity ] := BWT[ arity ] + ( BWT[arity-i] * BWT[i] )
      od
    od:
    seq(BWT[ n ], n=1..24);
  • Mathematica
    BWT[1] = 1; For[arity = 2, arity <= 24, arity++, BWT[arity] = 0; (* commutative operation *) For[i = 1, i <= Floor[(arity-1)/2], i++, BWT[arity] = BWT[arity] + (BWT[arity-i]*BWT[i])]; If[EvenQ[arity], BWT[arity] = BWT[arity] + Binomial[BWT[ arity/2]+1, 2]]; (* non commutative operation *) For[i = 1, i <= arity-1, i++, BWT[arity] = BWT[arity] + (BWT[arity-i]*BWT[i])]];
    Table[BWT[n], {n, 1, 24}] (* Jean-François Alcover, Feb 15 2019, from Maple *)
Showing 1-3 of 3 results.