cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203748 Vandermonde sequence using x^2 + xy + y^2 applied to (0,1,1,2,2,...,floor(n/2)).

Original entry on oeis.org

1, 1, 3, 588, 1382976, 759365845056, 11257740654368225472, 85256857822344357223236943872, 30991931452969951465382132459004342829056, 10117962915393557751514211466029580457669394910570086400
Offset: 1

Views

Author

Clark Kimberling, Jan 05 2012

Keywords

Comments

See A093883 for a discussion and guide to related sequences.

Programs

  • Mathematica
    f[j_] := Floor[j/2]; z = 15;
    u := Product[f[j]^2 + f[j] f[k] + f[k]^2, {j, 1, k - 1}]
    v[n_] := Product[u, {k, 2, n}]
    Table[v[n], {n, 1, z}]          (* A203748 *)
    Table[v[n + 1]/v[n], {n, 1, z}] (* A203749 *)
    Table[Sqrt[v[n + 1]/v[n]], {n, 1, z}]
    Table[Sqrt[v[2 n]/v[2 n - 1]], {n, 1, z}] (* A203750 *)
    Table[Sqrt[v[2 n + 1]/(3 v[2 n])],
       {n, 1, z}]  (* A203751 *)
    %/%%         (* A000027 *)

A203774 Square root of v(2n)/v(2n-1), where v=A203773.

Original entry on oeis.org

1, 10, 390, 34000, 5255380, 1267531200, 439881715000, 207679463680000, 128024359806330000, 99861207456574720000, 96148662977402249500000, 112000625784958629888000000, 155250403381700932802965000000
Offset: 1

Views

Author

Clark Kimberling, Jan 05 2012

Keywords

Comments

See A203773.

Examples

			Triangle ( f(n)/(f(k)*f(n-k)) )0<=k<=n begins
1
1     1
1    10        1
1   390      390      1
1 34000  1326000  34000     1
- _Peter Bala_, Sep 21 2013
		

Crossrefs

Programs

Formula

Define a sequence f(n) by means of the double product f(n) = |product {1 <= a, b <= n} (a + b*i)|, a sort of 2-dimensional analog of n!. Then a(n) = f(n)/(f(1)*f(n-1)) is the first column of the triangle ( f(n)/(f(k)*f(n-k)) ) 0<=k<=n, an analog of Pascal's triangle. - Peter Bala, Sep 21 2013
a(n) = gamma((1-i)*n)*gamma((1+i)*n)*sinh(n*Pi)/Pi (conjecture). - Velin Yanev, Nov 15 2016

A203749 v(n+1)/v(n), where v=A203748.

Original entry on oeis.org

1, 3, 196, 2352, 549081, 14825187, 7573176576, 363512475648, 326470872935025, 24485315470126875, 34169385402567926784, 3690293623477336092672, 7392237545597804070571449, 1086658919202877198374003003
Offset: 1

Views

Author

Clark Kimberling, Jan 05 2012

Keywords

Comments

See A093883 for a discussion and guide to related sequences.

Programs

  • Mathematica
    f[j_] := Floor[j/2]; z = 15;
    u := Product[f[j]^2 + f[j] f[k] + f[k]^2, {j, 1, k - 1}]
    v[n_] := Product[u, {k, 2, n}]
    Table[v[n], {n, 1, z}]          (* A203748 *)
    Table[v[n + 1]/v[n], {n, 1, z}] (* A203749 *)
    Table[Sqrt[v[n + 1]/v[n]], {n, 1, z}]
    Table[Sqrt[v[2 n]/v[2 n - 1]], {n, 1, z}]  (* A203750 *)
    Table[Sqrt[v[2 n + 1]/(3 v[2 n])],
    {n, 1, z}]  (* A203751 *)
    %/%%  (* A000027 *)
Showing 1-3 of 3 results.