cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203773 Vandermonde sequence using x^2 + y^2 applied to (0,1,1,2,2,...,floor(n/2)).

Original entry on oeis.org

1, 1, 2, 200, 160000, 24336000000, 66627100800000000, 77020928524800000000000000, 2849158187989401600000000000000000000, 78690953969671659336819671040000000000000000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 05 2012

Keywords

Comments

See A093883 for a discussion and guide to related sequences.

Programs

  • Mathematica
    f[j_] := Floor[j/2]; z = 20;
    u := Product[f[j]^2 + f[k]^2, {j, 1, k - 1}]
    v[n_] := Product[u, {k, 2, n}]
    Table[v[n], {n, 1, z}]         (* A203773 *)
    Table[v[n + 1]/v[n], {n, 1, z}]
    Table[Sqrt[v[n + 1]/v[n]], {n, 1, z}]
    Table[Sqrt[v[2 n]/v[2 n - 1]], {n, 1, z}]  (* A203774 *)
    Table[Sqrt[v[2 n + 1]/(2 v[2 n])],
    {n, 1, z}]  (* A203775 *)
    %/%%          (* A000027 *)

A203750 Square root of v(2n)/v(2n-1), where v=A203748.

Original entry on oeis.org

1, 14, 741, 87024, 18068505, 5845458528, 2718866959893, 1719570636306432, 1419543579377755377, 1482454643117692608000, 1910657530214126188243749, 2978927846824451394372304896, 5526241720077994999033052180169
Offset: 1

Views

Author

Clark Kimberling, Jan 05 2012

Keywords

Comments

See A203748.

Examples

			Triangle ( f(n)/(f(k)*f(n-k)) ), 0 <= k <= n, begins
  1;
  1,     1;
  1,    14,        1;
  1,   741,      741,      1;
  1, 87024,  4606056,  87024,  1;
... - _Peter Bala_, Sep 21 2013
		

Crossrefs

Programs

Formula

Define a sequence f(n) by means of the double product f(n) = |Product_{1 <= a, b <= n} (a - b*w)|, where w = exp(2*Pi*i/3) is a primitive cube root of unity. So f(n) is a sort of 2-dimensional analog of n!. Then a(n) = f(n)/(f(1)*f(n-1)) is the first column of the triangle ( f(n)/(f(k)*f(n-k)) ) 0<=k<=n, an analog of Pascal's triangle. - Peter Bala, Sep 21 2013

A202945 v(n+1)/v(n), where v=A203773.

Original entry on oeis.org

1, 2, 100, 800, 152100, 2737800, 1156000000, 36992000000, 27619018944400, 1380950947220000, 1606635342973440000, 115677744694087680000, 193495923191341225000000, 18962600472751440050000000
Offset: 1

Views

Author

Clark Kimberling, Jan 05 2012

Keywords

Comments

See A093883 for a discussion and guide to related sequences.

Programs

  • Mathematica
    f[j_] := Floor[j/2]; z = 20;
    u := Product[f[j]^2 + f[k]^2, {j, 1, k - 1}]
    v[n_] := Product[u, {k, 2, n}]
    Table[v[n], {n, 1, z}]         (* A203773 *)
    Table[v[n + 1]/v[n], {n, 1, z}]  (* A202945 *)
    Table[Sqrt[v[n + 1]/v[n]], {n, 1, z}]
    Table[Sqrt[v[2 n]/v[2 n - 1]], {n, 1, z}]  (* A203774 *)
    Table[Sqrt[v[2 n + 1]/(2 v[2 n])],
       {n, 1, z}]  (* A203775 *)
    %/%%          (* A000027 *)
Showing 1-3 of 3 results.