A203804 G.f.: exp( Sum_{n>=1} A000204(n)^4 * x^n/n ) where A000204 is the Lucas numbers.
1, 1, 41, 126, 1526, 7854, 63629, 400789, 2870629, 19254504, 133376760, 909578760, 6249172910, 42785312510, 293403088510, 2010553849020, 13781960765020, 94458627485820, 647442212896270, 4437595353800270, 30415849505902910, 208472981440853160, 1428896115173689560
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 41*x^2 + 126*x^3 + 1526*x^4 + 7854*x^5 + 63629*x^6 +... where log(A(x)) = x + 3^4*x^2/2 + 4^4*x^3/3 + 7^4*x^4/4 + 11^4*x^5/5 + 18^4*x^6/6 + 29^4*x^7/7 + 47^4*x^8/8 +...+ Lucas(n)^4*x^n/n +...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,40,45,-285,-272,1022,370,-1840,370,1022,-272,-285,45,40,1,-1).
Programs
-
Mathematica
CoefficientList[Series[1/((1 - x)^6*(1 + 3*x + x^2)^4*(1 - 7*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 24 2017 *)
-
PARI
/* Subroutine used in PARI programs below: */ {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
PARI
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^4*x^k/k)+x*O(x^n)), n)}
-
PARI
{a(n,m=2)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}
Comments