A203808 G.f.: exp( Sum_{n>=1} A000204(n)^8 * x^n/n ) where A000204 is the Lucas numbers.
1, 1, 3281, 25126, 6845526, 121368902, 12805025677, 373879862237, 24707348223677, 948781359159752, 50702478932197928, 2210812262034197128, 108528095366637700218, 4974402150387759436378, 236926456045384849970778, 11047772769135934828000404
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3281*x^2 + 25126*x^3 + 6845526*x^4 + 121368902*x^5 + ... where log(A(x)) = x + 3^8*x^2/2 + 4^8*x^3/3 + 7^8*x^4/4 + 11^8*x^5/5 + 18^8*x^6/6 + 29^8*x^7/7 + 47^8*x^8/8 + ... + Lucas(n)^8*x^n/n + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..596
- Index entries for linear recurrences with constant coefficients, order 256.
Programs
-
Mathematica
CoefficientList[Series[1/((1 - x)^70*(1 + 3*x + x^2)^56*(1 - 7*x + x^2)^28*(1 + 18*x + x^2)^8*(1 - 47*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
-
PARI
/* Subroutine used in PARI programs below: */ {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
PARI
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^8*x^k/k)+x*O(x^n)), n)}
-
PARI
{a(n,m=4)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}
Comments