A203809 G.f.: exp( Sum_{n>=1} A000204(n)^9 * x^n/n ) where A000204 is the Lucas numbers.
1, 1, 9842, 97223, 58608265, 1390114224, 296390076414, 12122505505998, 1486321234837932, 84428445979241330, 7833461016478812734, 528228569507280147664, 43275470600883540869733, 3148637876123977595284117, 245565185017744596492591850
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 9842*x^2 + 97223*x^3 + 58608265*x^4 + 1390114224*x^5 + ... where log(A(x)) = x + 3^9*x^2/2 + 4^9*x^3/3 + 7^9*x^4/4 + 11^9*x^5/5 + 18^9*x^6/6 + 29^9*x^7/7 + 47^9*x^8/8 + ... + Lucas(n)^9*x^n/n + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..530
- Index entries for linear recurrences with constant coefficients, order 512.
Programs
-
Mathematica
CoefficientList[Series[1/((1 - x - x^2)^126*(1 + 4*x - x^2)^84*(1 - 11*x - x^2)^36*(1 + 29*x - x^2)^9*(1 - 76*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
-
PARI
/* Subroutine used in PARI programs below: */ {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
PARI
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^9*x^k/k)+x*O(x^n)), n)}
-
PARI
{a(n,m=4)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}
Comments