cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203838 a(n) = sigma_3(n)*Fibonacci(n), where sigma_3(n) = A001158(n), the sum of cubes of divisors of n.

Original entry on oeis.org

1, 9, 56, 219, 630, 2016, 4472, 12285, 25738, 62370, 118548, 294336, 512134, 1167192, 2152080, 4620147, 7847658, 17604792, 28681660, 62224470, 105431872, 212319468, 348698376, 759507840, 1181718775, 2401396326, 4014783920, 7980869832, 12542045310
Offset: 1

Views

Author

Paul D. Hanna, Jan 12 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} n^3*x^n/(1-x^n) = Sum_{n>=1} sigma_3(n)*x^n.

Examples

			G.f.: A(x) = x + 9*x^2 + 56*x^3 + 219*x^4 + 630*x^5 + 2016*x^6 +...
where A(x) = x/(1-x-x^2) + 2^3*1*x^2/(1-3*x^2+x^4) + 3^3*2*x^3/(1-4*x^3-x^6) + 4^3*3*x^4/(1-7*x^4+x^8) + 5^3*5*x^5/(1-11*x^5-x^10) + 6^3*8*x^6/(1-18*x^6+x^12) +...+ n^3*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Cf. A203847, A203848, A203849, A001158 (sigma_3), A000204 (Lucas), A000045.

Programs

  • PARI
    {a(n)=sigma(n,3)*fibonacci(n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1,n,m^3*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} n^3*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_3(n)*fibonacci(n)*x^n, where Lucas(n) = A000204(n).