cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203849 a(n) = sigma_2(n)*Fibonacci(n), where sigma_2(n) = A001157(n), the sum of squares of divisors of n.

Original entry on oeis.org

1, 5, 20, 63, 130, 400, 650, 1785, 3094, 7150, 10858, 30240, 39610, 94250, 158600, 336567, 463130, 1175720, 1513522, 3693690, 5473000, 10803710, 15188210, 39412800, 48841275, 103184050, 161062760, 333701550, 432980818, 1081652000, 1295110778, 2973391785, 4299985160
Offset: 1

Views

Author

Paul D. Hanna, Jan 12 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} n^2*x^n/(1-x^n) = Sum_{n>=1} sigma_2(n)*x^n.

Examples

			G.f.: A(x) = x + 5*x^2 + 20*x^3 + 63*x^4 + 130*x^5 + 400*x^6 + 650*x^7 +...
where A(x) = x/(1-x-x^2) + 2^2*1*x^2/(1-3*x^2+x^4) + 3^2*2*x^3/(1-4*x^3-x^6) + 4^2*3*x^4/(1-7*x^4+x^8) + 5^2*5*x^5/(1-11*x^5-x^10) + 6^2*8*x^6/(1-18*x^6+x^12) +...+ n^2*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Cf. A203847, A203848, A203838, A001157 (sigma_2), A000204 (Lucas), A000045.

Programs

  • Mathematica
    Table[DivisorSigma[2, n]*Fibonacci[n], {n, 50}] (* G. C. Greubel, Jul 17 2018 *)
  • PARI
    {a(n)=sigma(n,2)*fibonacci(n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1,n,m^2*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} n^2*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_2(n)*fibonacci(n)*x^n, where Lucas(n) = A000204(n).