A203908 Multiplicative with a(p^e) = abs(p-e).
1, 1, 2, 0, 4, 2, 6, 1, 1, 4, 10, 0, 12, 6, 8, 2, 16, 1, 18, 0, 12, 10, 22, 2, 3, 12, 0, 0, 28, 8, 30, 3, 20, 16, 24, 0, 36, 18, 24, 4, 40, 12, 42, 0, 4, 22, 46, 4, 5, 3, 32, 0, 52, 0, 40, 6, 36, 28, 58, 0, 60, 30, 6, 4, 48, 20, 66, 0, 44, 24, 70, 1, 72, 36
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Plot of Sum_{k=1..n} a(k) / n^2 for n = 1..1000000
Programs
-
Haskell
a203908 n = product $ map abs $ zipWith (-) (a027748_row n) (a124010_row n) -- Reinhard Zumkeller, Dec 24 2013
-
Mathematica
ar[p_,s_] := Abs[p-s]; arit[1] = 1; arit[n_] := Product[ar[FactorInteger[n][[i,1]], FactorInteger[n][[i,2]]], {i, Length[FactorInteger[n]]}]; Array[arit, 100] (* José María Grau Ribas, Jan 25 2012 *)
Formula
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} ((1 - 1/p^5 + 2/p^4 + 2/p^3 - 4/p^2)*(1 - p - 3*p^2 + p^3 + p^4 + 2*p^(2-2*p))/(1 - p - 3*p^2 + p^3 + p^4)) = 0.2228124152... . - Amiram Eldar, Jan 14 2023
Comments