cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A051674 a(n) = prime(n)^prime(n).

Original entry on oeis.org

4, 27, 3125, 823543, 285311670611, 302875106592253, 827240261886336764177, 1978419655660313589123979, 20880467999847912034355032910567, 2567686153161211134561828214731016126483469, 17069174130723235958610643029059314756044734431
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that bigomega(k)^(bigomega(k)) = k, where bigomega = A001222. - Lekraj Beedassy, Aug 21 2004
Positive k such that k' = k, where k' is the arithmetic derivative of k. - T. D. Noe, Oct 12 2004
David Beckwith proposes (in the AMM reference): "Let n be a positive integer and let p be a prime number. Prove that (p^p) | n! implies that (p^(p + 1)) | n!". - Jonathan Vos Post, Feb 20 2006
Subsequence of A100716; A003415(m*a(n)) = A129283(m)*a(n), especially A003415(a(n)) = a(n). - Reinhard Zumkeller, Apr 07 2007
A168036(a(n)) = 0. - Reinhard Zumkeller, May 22 2015

Examples

			a(1) = 2^2 = 4.
a(2) = 3^3 = 27.
a(3) = 5^5 = 3125.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 740 pp. 95; 312, Ellipses Paris 2004.

Crossrefs

Cf. A000040, A000312, A003415 (arithmetic derivative of n), A129150, A129151, A129152, A048102, A072873 (multiplicative closure), A104126.
Subsequence of A100717; A203908(a(n)) = 0.
Subsequence of A097764.
Cf. A168036, A094289 (decimal expansion of Sum(1/p^p)).

Programs

Formula

a(n) = A000312(A000040(n)). - Altug Alkan, Sep 01 2016
Sum_{n>=1} 1/a(n) = A094289. - Amiram Eldar, Oct 13 2020

A008473 If n = Product (p_j^k_j) then a(n) = Product (p_j + k_j).

Original entry on oeis.org

1, 3, 4, 4, 6, 12, 8, 5, 5, 18, 12, 16, 14, 24, 24, 6, 18, 15, 20, 24, 32, 36, 24, 20, 7, 42, 6, 32, 30, 72, 32, 7, 48, 54, 48, 20, 38, 60, 56, 30, 42, 96, 44, 48, 30, 72, 48, 24, 9, 21, 72, 56, 54, 18, 72, 40, 80, 90, 60, 96, 62, 96, 40, 8, 84, 144, 68, 72, 96, 144, 72, 25, 74, 114
Offset: 1

Views

Author

Keywords

Comments

Coincides with sigma (A000203) for squarefree n. - Franklin T. Adams-Watters, Jan 31 2016
Every positive integer except 2 occurs in this sequence, but none occur infinitely often. For m > 4, there are n > m with a(n) = m. This implies that every integer greater than 4 occurs in the iterated sequence infinitely often. For example, 5 <- 8 <- 125 <- 113^12 <- .... - Franklin T. Adams-Watters, Jan 31 2016
Sum of the powerfree parts of the divisors of n. - Wesley Ivan Hurt, Jun 13 2021

Crossrefs

Cf. A055231 (powerfree part of n).

Programs

  • Haskell
    a008473 n = product $ zipWith (+) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Jul 17 2014
    
  • Maple
    A008473 := proc(n) local e,j; e := ifactors(n)[2]:
    mul (e[j][1]+e[j][2], j=1..nops(e)) end:
    seq (A008473(n), n=1..80);
    # Peter Luschny, Jan 17 2011
  • Mathematica
    Array[Times @@ Total /@ FactorInteger[ # ] &, 80] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Jul 28 2006 *)
  • PARI
    a(n)=my(f = factor(n)); for (k=1, #f~, f[k, 1] = f[k, 1] + f[k, 2]; f[k, 2] = 1;); factorback(f); \\ Michel Marcus, Jan 31 2016

Formula

Multiplicative with a(p^e) = p+e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} (A027748(n,k) + A124010(n,k)). - Reinhard Zumkeller, Jul 17 2014
a(n)/A007947(n) = A322965(n)/A322966(n). - David S. Metzler, Jan 01 2019
a(n) = Sum_{d|n} A055231(d). - Wesley Ivan Hurt, Jun 13 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - 2/p^2 + 2/p^4 - 1/p^5) = 0.5342800948... . - Amiram Eldar, Dec 08 2022

Extensions

More terms from Joseph Biberstine (jrbibers(AT)indiana.edu), Jul 28 2006

A100717 Numbers k having a prime divisor p such that p^p is the highest power of p that divides k.

Original entry on oeis.org

4, 12, 20, 27, 28, 36, 44, 52, 54, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 135, 140, 148, 156, 164, 172, 180, 188, 189, 196, 204, 212, 216, 220, 228, 236, 244, 252, 260, 268, 270, 276, 284, 292, 297, 300, 308, 316, 324, 332, 340, 348, 351, 356, 364, 372
Offset: 1

Views

Author

Leroy Quet, Dec 10 2004

Keywords

Comments

For each prime p, the sequence includes all k*p^p for k such that gcd(k,p)=1. - T. D. Noe
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/p^p + 1/p^(p+1)) = 0.14682429539560371215... . - Amiram Eldar, Jun 25 2022

Examples

			54 is included because 3^3, but not 3^4, divides 54.
		

Crossrefs

Subsequences: A051674, A048102 \ {1}.

Programs

  • Haskell
    a100717 n = a100717_list !! (n-1)
    a100717_list = filter ((== 0) . a203908) [1..]
    -- Reinhard Zumkeller, Dec 24 2013
  • Mathematica
    fQ[n_] := Union[ Table[ #[[1]] == #[[2]]] & /@ FactorInteger[n]][[ -1]] == True; Select[ Range[2, 375], fQ[ # ] &] (* Robert G. Wilson v, Dec 14 2004 *)

Formula

A203908(a(n)) = 0. - Reinhard Zumkeller, Dec 24 2013

Extensions

More terms from T. D. Noe and Robert G. Wilson v, Dec 14 2004
Showing 1-3 of 3 results.