cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A039779 Numbers k such that phi(k) is equal to A008473(k).

Original entry on oeis.org

1, 54, 99, 112, 540, 3344, 4743, 6720, 7644, 8307, 11088, 12852, 15225, 20300, 22320, 83160, 86304, 94944, 129504, 160208, 186992, 200640, 205712, 207264, 266266, 280592, 331731, 364941, 383724, 404550, 441232, 445050, 447876, 449072, 454575, 458052, 497781
Offset: 1

Views

Author

Keywords

Examples

			phi(54) = 18, 54 = 2^1*3^3, (2+1)*(3+3) = 18.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n < 500000, n++, If[EulerPhi[n] == Times @@ Plus @@@ FactorInteger[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, May 06 2017 *)
  • PARI
    is(k) = {my(f = factor(k)); eulerphi(f) == prod(i = 1, #f~, f[i, 1] + f[i, 2]);} \\ Amiram Eldar, Dec 04 2024

A039780 Numbers k such that phi(k) is equal to A008473(k-1).

Original entry on oeis.org

5, 25, 1176, 1625, 7385, 18633, 21726, 30276, 32923, 36905, 46025, 50809, 55449, 60726, 89257, 102425, 151657, 185745, 278226, 289961, 301017, 319145, 373176, 394121, 459513, 779817, 815676, 827926, 1053019, 1055719, 1170153, 1399123, 1657865, 1663209, 1667326
Offset: 1

Views

Author

Keywords

Examples

			phi(1176)=336, 1175=5^2*47^1, (5+2)*(47+1)=336.
		

Crossrefs

Programs

  • PARI
    b(n) = my(f = factor(n)); for (k=1, #f~, f[k, 1] = f[k, 1] + f[k, 2]; f[k, 2] = 1; ); factorback(f); \\ A008473
    isok(k) = (k>1) && (eulerphi(k) == b(k-1)); \\ Michel Marcus, Feb 25 2021

Extensions

Title corrected and more terms from Sean A. Irvine, Feb 24 2021

A039781 Numbers k such that phi(k) is equal to A008473(k+1).

Original entry on oeis.org

55, 174, 183, 341, 407, 1274, 5424, 6887, 18903, 22167, 27559, 53847, 66711, 68237, 77957, 78155, 91524, 132791, 133574, 138471, 149435, 191575, 220759, 274224, 339024, 413424, 432233, 493724, 505735, 543221, 684167, 694823, 703824, 711774, 747175, 883463
Offset: 1

Views

Author

Keywords

Examples

			phi(174)=56, 175=5^2*7^1, (5+2)*(7+1)=56.
		

Crossrefs

Programs

  • PARI
    b(n)=my(f = factor(n)); for (k=1, #f~, f[k, 1] = f[k, 1] + f[k, 2]; f[k, 2] = 1; ); factorback(f); \\ A008473
    isok(k) = eulerphi(k) == b(k+1); \\ Michel Marcus, Feb 25 2021

Extensions

Title corrected and more terms from Sean A. Irvine, Feb 24 2021

A376299 Fixed points of A008473.

Original entry on oeis.org

1, 4, 90, 120
Offset: 1

Views

Author

Darío Clavijo, Sep 19 2024

Keywords

Comments

These are the numbers such that the sum of the powerfree parts of the divisors of n equals n.
These fixed points appeared in A299352 and the linked Combo Class video. The former notes there are no more fixed points <= 10^8. - Michael S. Branicky, Sep 19 2024
Any further terms are > 10^11. - Lucas A. Brown, Oct 19 2024

Crossrefs

Programs

  • Python
    from sympy import factorint, prod
    A008473 = lambda n: prod(sum(pk) for pk in factorint(n).items())
    isok = lambda n: A008473(n) == n
    print([n for n in range(1, 10**6) if isok(n)])

A182938 If n = Product (p_j^e_j) then a(n) = Product (binomial(p_j, e_j)).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 0, 3, 10, 11, 3, 13, 14, 15, 0, 17, 6, 19, 5, 21, 22, 23, 0, 10, 26, 1, 7, 29, 30, 31, 0, 33, 34, 35, 3, 37, 38, 39, 0, 41, 42, 43, 11, 15, 46, 47, 0, 21, 20, 51, 13, 53, 2, 55, 0, 57, 58, 59, 15, 61, 62, 21, 0, 65, 66
Offset: 1

Views

Author

Peter Luschny, Jan 16 2011

Keywords

Crossrefs

Programs

  • Haskell
    a182938 n = product $ zipWith a007318'
       (a027748_row n) (map toInteger $ a124010_row n)
    -- Reinhard Zumkeller, Feb 18 2012
  • Maple
    A182938 := proc(n) local e,j; e := ifactors(n)[2]:
    mul (binomial(e[j][1], e[j][2]), j=1..nops(e)) end:
    seq (A182938(n), n=1..100);
  • Mathematica
    a[n_] := Times @@ (Map[Binomial @@ # &, FactorInteger[n], 1]);
    Table[a[n], {n, 1, 100}] (* Kellen Myers, Jan 16 2011 *)
  • PARI
    a(n)=prod(i=1,#n=factor(n)~,binomial(n[1,i],n[2,i])) \\ M. F. Hasler
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)^p)[n], ", ")) \\ Vaclav Kotesovec, Mar 28 2025
    

Formula

a(A185359(n)) = 0. - Reinhard Zumkeller, Feb 18 2012
Dirichlet g.f.: Product_{p prime} (1 + p^(-s))^p. - Ilya Gutkovskiy, Oct 26 2019
Conjecture: Sum_{k=1..n} a(k) ~ c * n^2, where c = 0.33754... - Vaclav Kotesovec, Mar 28 2025

Extensions

Given terms checked with new PARI code by M. F. Hasler, Jan 16 2011

A203908 Multiplicative with a(p^e) = abs(p-e).

Original entry on oeis.org

1, 1, 2, 0, 4, 2, 6, 1, 1, 4, 10, 0, 12, 6, 8, 2, 16, 1, 18, 0, 12, 10, 22, 2, 3, 12, 0, 0, 28, 8, 30, 3, 20, 16, 24, 0, 36, 18, 24, 4, 40, 12, 42, 0, 4, 22, 46, 4, 5, 3, 32, 0, 52, 0, 40, 6, 36, 28, 58, 0, 60, 30, 6, 4, 48, 20, 66, 0, 44, 24, 70, 1, 72, 36
Offset: 1

Views

Author

Keywords

Comments

Density of nonzero terms is 0.85317570460439... = Product(1 - p^-p + p^-(p+1)) where p runs over the primes. - Charles R Greathouse IV, Jan 23 2012 [corrected by Amiram Eldar, Jan 14 2023]

Crossrefs

Cf. A100717 (n such that a(n)=0).

Programs

  • Haskell
    a203908 n = product $ map abs $
                zipWith (-) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Dec 24 2013
  • Mathematica
    ar[p_,s_] := Abs[p-s]; arit[1] = 1; arit[n_] := Product[ar[FactorInteger[n][[i,1]], FactorInteger[n][[i,2]]], {i, Length[FactorInteger[n]]}]; Array[arit, 100] (* José María Grau Ribas, Jan 25 2012 *)

Formula

Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} ((1 - 1/p^5 + 2/p^4 + 2/p^3 - 4/p^2)*(1 - p - 3*p^2 + p^3 + p^4 + 2*p^(2-2*p))/(1 - p - 3*p^2 + p^3 + p^4)) = 0.2228124152... . - Amiram Eldar, Jan 14 2023

A299352 For x=n, iterate the map x -> Product_{k is a prime dividing x} (k + (multiplicity of k)), a(n) is the number of steps to see a repeated term for the first time.

Original entry on oeis.org

3, 2, 1, 4, 3, 6, 5, 5, 5, 4, 3, 4, 3, 3, 3, 5, 4, 3, 2, 8, 4, 3, 2, 7, 11, 4, 8, 10, 9, 8, 7, 4, 6, 4, 3, 12, 11, 12, 10, 11, 10, 5, 4, 10, 9, 4, 3, 6, 9, 9, 12, 6, 5, 9, 11, 5, 2, 11, 10, 11, 10, 11, 6, 8, 11, 10, 9, 10, 11, 9, 8, 14, 13, 9, 5, 10, 13, 5, 4
Offset: 2

Views

Author

Lars Blomberg, Feb 07 2018

Keywords

Comments

It appears that all n end in one of the orbits (6,12,16) or (20,24) or one of the fixed points 4, 90, 120, verified to n=10^8.

Examples

			For n=2: 2=2^1 -> (2+1)=3=3^1 -> (3+1)=4=2^2 -> (2+2)=4; 4 is repeated so a(2)=3.
For n=12: 12=2^2*3^1 -> (2+2)*(3+1)=16=2^4 -> (2+4)=6=2^1*3^1 -> (2+1)*(3+1)=12; 12 is repeated so a(12)=3.
		

Crossrefs

Cf. A008473 (the map), A299351.

A322965 Numerator of Sum_{d | n} 1/rad(d).

Original entry on oeis.org

1, 3, 4, 2, 6, 2, 8, 5, 5, 9, 12, 8, 14, 12, 8, 3, 18, 5, 20, 12, 32, 18, 24, 10, 7, 21, 2, 16, 30, 12, 32, 7, 16, 27, 48, 10, 38, 30, 56, 3, 42, 16, 44, 24, 2, 36, 48, 4, 9, 21, 24, 28, 54, 3, 72, 20, 80, 45, 60, 16, 62, 48, 40, 4, 84, 24, 68, 36, 32, 72, 72, 25, 74, 57, 28
Offset: 1

Views

Author

David S. Metzler, Dec 31 2018

Keywords

Comments

Let rad(n) be the radical of n, which equals the product of all prime factors of n (A007947). Let g(n) = 1/rad(n) and let f(n) = Sum_{d | n} g(d). This is a multiplicative function whose value on a prime power is f(p^k) = 1 + k/p. Hence f is a weighted divisor-counting function that weights divisors d higher when they have few and small prime divisors themselves. The sequence a(n) lists the numerators of the fractions f(n) in lowest terms.
If p is prime, then a(p^k) = p+k if p does not divide k, 1 + k/p if it does. In particular, a(p^p) = 2. - Robert Israel, Jan 25 2019

Examples

			The divisors of 12 are 1,2,3,4,6,12, so f(12) = 1 + (1/2) + (1/3) + (1/2) + (1/6) + (1/6) = 8/3 and a(12) = 8. Alternately, since f is multiplicative, f(12) = f(4)*f(3) = (1+2/2)*(1+1/3) = 8/3.
		

Crossrefs

Cf. A007947 (radical), A322966 (denominators), A008473 (unreduced numerators, i.e., f(n)*rad(n)), A082695.
Numbers n where f(n) increases to a record: A322447.

Programs

  • Maple
    rad:= n -> convert(numtheory:-factorset(n),`*`):
    f:= proc(n) numer(add(1/rad(d),d=numtheory:-divisors(n))) end proc:
    map(f, [$1..100]); # Robert Israel, Jan 25 2019
  • Mathematica
    Array[Numerator@ DivisorSum[#, 1/Apply[Times, FactorInteger[#][[All, 1]]] &] &, 71] (* Michael De Vlieger, Jan 19 2019 *)
  • PARI
    rad(n) = factorback(factor(n)[, 1]); \\ A007947
    a(n) = numerator(sumdiv(n, d, 1/rad(d))); \\ Michel Marcus, Jan 10 2019

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A322966(k) = zeta(2)*zeta(3)/zeta(6) (A082695). - Amiram Eldar, Dec 09 2023

Extensions

More terms from Michel Marcus, Jan 19 2019

A381588 If n = Product (p_j^k_j) then a(n) = Product (lcm(p_j, k_j)), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 6, 6, 10, 11, 6, 13, 14, 15, 4, 17, 12, 19, 10, 21, 22, 23, 18, 10, 26, 3, 14, 29, 30, 31, 10, 33, 34, 35, 12, 37, 38, 39, 30, 41, 42, 43, 22, 30, 46, 47, 12, 14, 20, 51, 26, 53, 6, 55, 42, 57, 58, 59, 30, 61, 62, 42, 6, 65, 66, 67, 34, 69, 70, 71
Offset: 1

Views

Author

Paolo Xausa, Feb 28 2025

Keywords

Examples

			a(18) = 12 because 18 = 2^1*3^2, lcm(2,1) = 2, lcm(3,2) = 6 and 2*6 = 12.
a(300) = 30 because 300 = 2^2*3^1*5^2, lcm(2,2) = 2, lcm(3,1) = 3, lcm(5,2) = 10 and 2*3*10 = 60.
		

Crossrefs

Cf. A008473, A008477, A035306, A144338 (fixed points), A369008 (analogous for gcd).

Programs

  • Mathematica
    A381588[n_] := Times @@ LCM @@@ FactorInteger[n];
    Array[A381588, 100]
  • PARI
    a(n) = my(f=factor(n)); prod(i=1, #f~, lcm(f[i,1], f[i,2])); \\ Michel Marcus, Mar 02 2025

Formula

a(p) = p, for p prime.

A381613 If n = Product (p_j^k_j) then a(n) = Product (min(p_j, k_j)), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Paolo Xausa, Mar 01 2025

Keywords

Comments

First differs from A323308 at n = 27.

Examples

			a(18) = 2 because 18 = 2^1*3^2, min(2,1) = 1, min(3,2) = 2 and 1*2 = 2.
a(300) = 4 because 300 = 2^2*3^1*5^2, min(2,2) = 2, min(3,1) = 1, min(5,2) = 2 and 2*1*2 = 4.
		

Crossrefs

Programs

  • Mathematica
    A381613[n_] := Times @@ Min @@@ FactorInteger[n];
    Array[A381613, 100]
  • PARI
    a(n) = my(f=factor(n)); prod(i=1, #f~, min(f[i,1], f[i,2])); \\ Michel Marcus, Mar 02 2025

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (1/p - 1/p^p)/(p-1)) = 1.59383299054679951264... . - Amiram Eldar, Mar 07 2025
Showing 1-10 of 11 results. Next