cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A185359 Numbers k such that {m^m mod k: m >= 1} is not purely periodic.

Original entry on oeis.org

8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 81, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 162, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 243, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 324, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400
Offset: 1

Views

Author

Keywords

Comments

k is a term if and only if k = Product_{i=1..t} p_i^e_i with e_i > p_i for some i.
A182938(a(n)) = 0. - Reinhard Zumkeller, Feb 18 2012
The asymptotic density of this sequence is 1 - Product_{p prime} 1 - 1/p^(p+1) = 0.13585792767780221591... - Amiram Eldar, Nov 24 2020

Crossrefs

Cf. A027748, A124010, A008590 (subsequence), A185358, A207481 (complement).

Programs

  • Haskell
    a185359 n = a185359_list !! (n-1)
    a185359_list = [x | x <- [1..], or $ zipWith (<)
                        (a027748_row x) (map toInteger $ a124010_row x)]
    -- Reinhard Zumkeller, Feb 18 2012
  • Mathematica
    j[p_,e_]:=e>p;j[n_]:={False}==Union@Module[{fa=FactorInteger[n]},Table[j[fa[[i,1]],fa[[i,2]]],{i,1,Length[fa]}]];Select[Range[1000],!j[#]&]

A104126 a(n) = prime(n)^(prime(n)+1).

Original entry on oeis.org

8, 81, 15625, 5764801, 3138428376721, 3937376385699289, 14063084452067724991009, 37589973457545958193355601, 480250763996501976790165756943041
Offset: 1

Views

Author

Cino Hilliard, Mar 06 2005

Keywords

Comments

Sum of reciprocals rapidly converges to 0.1374098524791901212366977116..
A182938(a(n)) = 0. [Reinhard Zumkeller, Feb 18 2012]

Crossrefs

Programs

  • Haskell
    a104126 n = p ^ (p + 1) where p = a000040 n
    -- Reinhard Zumkeller, Feb 18 2012
  • Mathematica
    #^(#+1)&/@Prime[Range[10]] (* Harvey P. Dale, Dec 12 2021 *)
  • PARI
    ptopp1(n) = { local(x,y,z,sr=0); forprime(x=1,n, y=x^(x+1); z=(x+1)^x; sr+=1./y; print1(y","); ); print(); print(sr) }
    

Extensions

Offset corrected by Reinhard Zumkeller, Feb 18 2012

A328745 Dirichlet g.f.: Product_{p prime} 1 / (1 - p^(-s))^p.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 4, 6, 10, 11, 9, 13, 14, 15, 5, 17, 12, 19, 15, 21, 22, 23, 12, 15, 26, 10, 21, 29, 30, 31, 6, 33, 34, 35, 18, 37, 38, 39, 20, 41, 42, 43, 33, 30, 46, 47, 15, 28, 30, 51, 39, 53, 20, 55, 28, 57, 58, 59, 45, 61, 62, 42, 7, 65, 66, 67, 51, 69, 70, 71, 24, 73, 74, 45
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 26 2019

Keywords

Comments

Number of ways to factor n into 2 kinds of 2, 3 kinds of 3, 5 kinds of 5, ... , p kinds of p.

Crossrefs

Programs

  • Maple
    a:= n-> mul(binomial(i[1]+i[2]-1, i[2]), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 26 2019
  • Mathematica
    a[n_] := Times @@ (Binomial[#[[1]] + #[[2]] - 1, #[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 75}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X)^p)[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021

Formula

If n = Product (p_j^k_j) then a(n) = Product (binomial(p_j + k_j - 1, k_j)).
Conjecture: Sum_{k=1..n} a(k) ~ c * n^2, where c = 0.40373... - Vaclav Kotesovec, Mar 28 2025

A329445 Dirichlet inverse of A328745.

Original entry on oeis.org

1, -2, -3, 1, -5, 6, -7, 0, 3, 10, -11, -3, -13, 14, 15, 0, -17, -6, -19, -5, 21, 22, -23, 0, 10, 26, -1, -7, -29, -30, -31, 0, 33, 34, 35, 3, -37, 38, 39, 0, -41, -42, -43, -11, -15, 46, -47, 0, 21, -20, 51, -13, -53, 2, 55, 0, 57, 58, -59, 15, -61, 62, -21, 0, 65, -66, -67, -17
Offset: 1

Views

Author

Werner Schulte, Nov 13 2019

Keywords

Comments

Signed version of A182938.

Crossrefs

Programs

  • Python
    from math import prod, comb
    from sympy import factorint
    def A329445(n): return prod(-comb(p,e) if e&1 else comb(p,e) for p,e in factorint(n).items()) # Chai Wah Wu, Dec 23 2022

Formula

Multiplicative with a(p^e) = (-1)^e*binomial(p,e) for prime p and e >= 0.
Dirichlet g.f.: Sum_{n>0} a(n)/n^s = Product_{p prime} (1-p^(-s))^p.
a(n) = A182938(n) * A008836(n) for n > 0.
Showing 1-4 of 4 results.