cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A051674 a(n) = prime(n)^prime(n).

Original entry on oeis.org

4, 27, 3125, 823543, 285311670611, 302875106592253, 827240261886336764177, 1978419655660313589123979, 20880467999847912034355032910567, 2567686153161211134561828214731016126483469, 17069174130723235958610643029059314756044734431
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that bigomega(k)^(bigomega(k)) = k, where bigomega = A001222. - Lekraj Beedassy, Aug 21 2004
Positive k such that k' = k, where k' is the arithmetic derivative of k. - T. D. Noe, Oct 12 2004
David Beckwith proposes (in the AMM reference): "Let n be a positive integer and let p be a prime number. Prove that (p^p) | n! implies that (p^(p + 1)) | n!". - Jonathan Vos Post, Feb 20 2006
Subsequence of A100716; A003415(m*a(n)) = A129283(m)*a(n), especially A003415(a(n)) = a(n). - Reinhard Zumkeller, Apr 07 2007
A168036(a(n)) = 0. - Reinhard Zumkeller, May 22 2015

Examples

			a(1) = 2^2 = 4.
a(2) = 3^3 = 27.
a(3) = 5^5 = 3125.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 740 pp. 95; 312, Ellipses Paris 2004.

Crossrefs

Cf. A000040, A000312, A003415 (arithmetic derivative of n), A129150, A129151, A129152, A048102, A072873 (multiplicative closure), A104126.
Subsequence of A100717; A203908(a(n)) = 0.
Subsequence of A097764.
Cf. A168036, A094289 (decimal expansion of Sum(1/p^p)).

Programs

Formula

a(n) = A000312(A000040(n)). - Altug Alkan, Sep 01 2016
Sum_{n>=1} 1/a(n) = A094289. - Amiram Eldar, Oct 13 2020

A054743 If n = Product p_i^e_i then p_i < e_i (where e_i > 0) for all i.

Original entry on oeis.org

1, 8, 16, 32, 64, 81, 128, 243, 256, 512, 648, 729, 1024, 1296, 1944, 2048, 2187, 2592, 3888, 4096, 5184, 5832, 6561, 7776, 8192, 10368, 11664, 15552, 15625, 16384, 17496, 19683, 20736, 23328, 31104, 32768, 34992, 41472, 46656
Offset: 1

Views

Author

James Sellers, Apr 22 2000

Keywords

Comments

Closed under multiplication. Use A104126 to construct A192135 by putting A104126(n) * prime(n)^k in a list up to some chosen bound. Create this sequence by multiplying any k elements of A192135 with distinct prime factors in a list (k>1). The last list along with A192135 is this sequence when sorted. - David A. Corneth, Jun 07 2016

Examples

			8 appears in the list because 8 = 2^3 and 2<3.
Construction of elements up to 1000: 1. Put 2^3 and 3^5 in a list; {8, 81} (The terms of A104126 up to 1000.) 2. For each element, put products the last list with their distinct prime factors up to 1000. Gives: {8, 16, 32, 64, 128, 256, 512, 81, 243, 729} (Terms from A192135 up to 1000). 3. Put products of k powers of distinct primes in a new list up to 1000: {648} (k>1). Unite {648} with {8, 16, 32, 64, 128, 256, 512, 81, 243, 729}. {8, 16, 32, 64, 128, 256, 512, 81, 243, 729, 648}. Sort the list. This gives: {8, 16, 32, 64, 81, 128, 243, 256, 512, 648, 729}, which are the elements below 1000 in this sequence. - _David A. Corneth_, Jun 07 2016
		

Crossrefs

Cf. A207481 (same construction, but with p_i>=e_i),

Programs

  • Maple
    N:= 10^10: # to get all terms <= N
    p:= 1:
    S:= {1}:
    do
      p:= nextprime(p);
      if p^(p+1) > N then break fi;
      pp:= [seq(p^j, j=p+1 .. ilog[p](N))];
      S:= S union select(`<=`,{seq(seq(s*q,s=S),q=pp)},N);
    od:
    sort(convert(S,list)); # Robert Israel, Jun 07 2016
  • Mathematica
    okQ[n_] := AllTrue[FactorInteger[n], #[[1]] < #[[2]]&];
    Join[{1}, Select[Range[50000], okQ]] (* Jean-François Alcover, Jun 08 2016 *)
  • PARI
    lista(nn) = {for (n=1, nn, f = factor(n); ok = 1; for (i=1, #f~, if (f[i, 1] >= f[i, 2], ok = 0; break;);); if (ok, print1(n, ", ")););} \\ Michel Marcus, Jun 15 2013

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} 1 + 1/((p-1)*p^p) = 1.27325025767774256043... - Amiram Eldar, Nov 24 2020

Extensions

1 prepended by Alec Jones, Jun 07 2016

A104128 a(n) = p + p^(p+1), where p = prime(n).

Original entry on oeis.org

10, 84, 15630, 5764808, 3138428376732, 3937376385699302, 14063084452067724991026, 37589973457545958193355620, 480250763996501976790165756943064, 74462898441675122902293018227199467668020630, 529144398052420314716929933900838757437386767392
Offset: 1

Views

Author

Cino Hilliard, Mar 06 2005

Keywords

Comments

Sum of reciprocals rapidly converges to 0.11196891489794721930017828981362..

Programs

Formula

a(n) = A000040(n) + A104126(n).

Extensions

Definition corrected and incorrect program removed by R. J. Mathar, Feb 27 2012
More terms from Harvey P. Dale, Feb 27 2012

A381215 Numbers k such that the difference between the largest and smallest element of the set of bases and exponents (including exponents = 1) in the prime factorization of k is 1.

Original entry on oeis.org

2, 8, 9, 36, 72, 81, 108, 216, 625, 15625, 117649, 5764801, 25937424601, 3138428376721, 23298085122481, 3937376385699289, 48661191875666868481, 14063084452067724991009, 104127350297911241532841, 37589973457545958193355601, 907846434775996175406740561329
Offset: 1

Views

Author

Paolo Xausa, Feb 19 2025

Keywords

Examples

			72 is a term because 72 = 2^3*3^2, the set of these bases and exponents is {2, 3} and 3 - 2 = 1.
		

Crossrefs

Positions of ones in A381214.

Programs

  • Mathematica
    Join[{2, 8, 9, 36, 72, 81, 108, 216}, Flatten[Map[#^{# - 1, # + 1} &, Prime[Range[3, 10]]]]]

Formula

For n >= 9, a(n) = A381317(n-4).

A381317 Numbers of the form p^(p +- 1), where p is prime.

Original entry on oeis.org

2, 8, 9, 81, 625, 15625, 117649, 5764801, 25937424601, 3138428376721, 23298085122481, 3937376385699289, 48661191875666868481, 14063084452067724991009, 104127350297911241532841, 37589973457545958193355601, 907846434775996175406740561329, 480250763996501976790165756943041
Offset: 1

Views

Author

Paolo Xausa, Feb 20 2025

Keywords

Crossrefs

Union of A036878 and A104126.
Subsequence of A381215.

Programs

  • Mathematica
    Flatten[Map[#^{# - 1, # + 1} &, Prime[Range[10]]]]

A166326 a(n) = prime(n)^(prime(n)+1) - (prime(n)+1)^prime(n).

Original entry on oeis.org

-1, 17, 7849, 3667649, 2395420006033, 3143661612445145, 11877172892329028459041, 32347093457545958193355601, 424678439961073471604787362241217
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 2^3 - 3^2 = -1. a(2) = 3^4 - 4^3 = 17. a(3) = 5^6 - 6^5 = 7849.
		

Crossrefs

Programs

  • Mathematica
    Array[Prime[ # ]^(Prime[ # ]+1)-(Prime[ # ]+1)^Prime[ # ]&,16]

Formula

a(n) = A104126(n) - A104127(n) = A007925(A000040(n)). - R. J. Mathar, Oct 14 2009

Extensions

Keyword:sign set by R. J. Mathar, Oct 14 2009

A352081 Numbers of the form k*p^k, where k>1 and p is a prime.

Original entry on oeis.org

8, 18, 24, 50, 64, 81, 98, 160, 242, 324, 338, 375, 384, 578, 722, 896, 1029, 1058, 1215, 1682, 1922, 2048, 2500, 2738, 3362, 3698, 3993, 4374, 4418, 4608, 5618, 6591, 6962, 7442, 8978, 9604, 10082, 10240, 10658, 12482, 13778, 14739, 15309, 15625, 15842, 18818
Offset: 1

Views

Author

Amiram Eldar, Apr 16 2022

Keywords

Comments

Each term in this sequence has a single presentation in the form k*p^k.

Examples

			8 is a term since 8 = 2*2^2.
18 is a term since 18 = 2*3^2.
24 is a term since 24 = 3*2^3.
		

Crossrefs

Subsequences: A036289 \ {0, 2}, A036290 \ {0, 3}, A036291 \ {0, 5}, A036293 \ {0, 7}, A073113 \ {2}, A079704, A100042, A104126.

Programs

  • Mathematica
    addP[p_, n_] := Module[{k = 2, s = {}, m}, While[(m = k*p^k) <= n, k++; AppendTo[s, m]]; s]; seq[max_] := Module[{m = Floor[Sqrt[max/2]], s = {}, ps}, ps = Select[Range[m], PrimeQ]; Do[s = Join[s, addP[p, max]], {p, ps}]; Sort[s]]; seq[2*10^4]

Formula

Sum_{n>=1} 1/a(n) = -A143524 = gamma - B_1, where gamma is Euler's constant (A001620), and B_1 is Mertens's constant (A077761).

A257404 Numbers of the form p * q^p where p and q are primes, in increasing order.

Original entry on oeis.org

8, 18, 24, 50, 81, 98, 160, 242, 338, 375, 578, 722, 896, 1029, 1058, 1215, 1682, 1922, 2738, 3362, 3698, 3993, 4418, 5618, 6591, 6962, 7442, 8978, 10082, 10658, 12482, 13778, 14739, 15309, 15625, 15842, 18818
Offset: 1

Views

Author

William Brian Repko, Apr 22 2015

Keywords

Examples

			(2,2):8, (2,3):18, (3,2):24, (2,5):50, (3,3):81, (2,7):98.
		

Crossrefs

Cf. some subsequences: A079704, A104126.

Programs

  • JavaScript
    primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97];
    results = [];
    max = 2 * Math.pow(primes[primes.length-1],2);
    for (i = 0; i < primes.length; i++) {
        for (j = 0; j  < primes.length; j++) {
            p = primes[i];
            q = primes[j];
            n = p * Math.pow(q,p);
            if (n <= max) {
                // add it
                results.push(n);
            } else {
                // break out of this loop
                break;
            }
        }
    }
    // sort results and print them
    results.sort(function(a, b){return a-b}).valueOf();
    
  • Mathematica
    max=10^5; p=q=2; Sort[Reap[While[2*q^2 <= max, While[(n=p*q^p) <= max, Sow@n; p=NextPrime@p]; p=2; q=NextPrime@q ]][[2,1]]] (* Giovanni Resta, May 19 2015 *)
  • PARI
    is(n)={bittest(6,#n=factor(n)~)||return;#n==1&&return(n[1,1]+1==n[2,1]);(n[2,1]==1&&n[2,2]==n[1,1])||(n[2,2]==1&&n[1,2]==n[2,1])} \\ M. F. Hasler, May 04 2015
Showing 1-8 of 8 results.