A051674
a(n) = prime(n)^prime(n).
Original entry on oeis.org
4, 27, 3125, 823543, 285311670611, 302875106592253, 827240261886336764177, 1978419655660313589123979, 20880467999847912034355032910567, 2567686153161211134561828214731016126483469, 17069174130723235958610643029059314756044734431
Offset: 1
a(1) = 2^2 = 4.
a(2) = 3^3 = 27.
a(3) = 5^5 = 3125.
- J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 740 pp. 95; 312, Ellipses Paris 2004.
- T. D. Noe, Table of n, a(n) for n = 1..40
- David Beckwith, Problem 11158, American Mathematical Monthly, Vol. 112, No. 5 (May 2005), p. 468.
- Jurij Kovic, The Arithmetic Derivative and Antiderivative, Journal of Integer Sequences, Vol. 15 (2012), #12.3.8.
-
a051674_list = map (\p -> p ^ p) a000040_list
-- Reinhard Zumkeller, Jan 21 2012
-
[p^p: p in PrimesUpTo(30)]; // Vincenzo Librandi, Mar 27 2014
-
A051674:=n->ithprime(n)^ithprime(n): seq(A051674(n), n=1..10); # Wesley Ivan Hurt, Jun 25 2016
-
Array[Prime[ # ]^Prime[ # ] &, 12] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
#^#&/@Prime[Range[10]] (* Harvey P. Dale, May 17 2024 *)
-
a(n)=n=prime(n);n^n \\ Charles R Greathouse IV, Mar 20 2013
-
from gmpy2 import mpz
[mpz(prime(n))**mpz(prime(n)) for n in range(1,100)] # Chai Wah Wu, Jul 28 2014
A054743
If n = Product p_i^e_i then p_i < e_i (where e_i > 0) for all i.
Original entry on oeis.org
1, 8, 16, 32, 64, 81, 128, 243, 256, 512, 648, 729, 1024, 1296, 1944, 2048, 2187, 2592, 3888, 4096, 5184, 5832, 6561, 7776, 8192, 10368, 11664, 15552, 15625, 16384, 17496, 19683, 20736, 23328, 31104, 32768, 34992, 41472, 46656
Offset: 1
8 appears in the list because 8 = 2^3 and 2<3.
Construction of elements up to 1000: 1. Put 2^3 and 3^5 in a list; {8, 81} (The terms of A104126 up to 1000.) 2. For each element, put products the last list with their distinct prime factors up to 1000. Gives: {8, 16, 32, 64, 128, 256, 512, 81, 243, 729} (Terms from A192135 up to 1000). 3. Put products of k powers of distinct primes in a new list up to 1000: {648} (k>1). Unite {648} with {8, 16, 32, 64, 128, 256, 512, 81, 243, 729}. {8, 16, 32, 64, 128, 256, 512, 81, 243, 729, 648}. Sort the list. This gives: {8, 16, 32, 64, 81, 128, 243, 256, 512, 648, 729}, which are the elements below 1000 in this sequence. - _David A. Corneth_, Jun 07 2016
Cf.
A207481 (same construction, but with p_i>=e_i),
-
N:= 10^10: # to get all terms <= N
p:= 1:
S:= {1}:
do
p:= nextprime(p);
if p^(p+1) > N then break fi;
pp:= [seq(p^j, j=p+1 .. ilog[p](N))];
S:= S union select(`<=`,{seq(seq(s*q,s=S),q=pp)},N);
od:
sort(convert(S,list)); # Robert Israel, Jun 07 2016
-
okQ[n_] := AllTrue[FactorInteger[n], #[[1]] < #[[2]]&];
Join[{1}, Select[Range[50000], okQ]] (* Jean-François Alcover, Jun 08 2016 *)
-
lista(nn) = {for (n=1, nn, f = factor(n); ok = 1; for (i=1, #f~, if (f[i, 1] >= f[i, 2], ok = 0; break;);); if (ok, print1(n, ", ")););} \\ Michel Marcus, Jun 15 2013
A104128
a(n) = p + p^(p+1), where p = prime(n).
Original entry on oeis.org
10, 84, 15630, 5764808, 3138428376732, 3937376385699302, 14063084452067724991026, 37589973457545958193355620, 480250763996501976790165756943064, 74462898441675122902293018227199467668020630, 529144398052420314716929933900838757437386767392
Offset: 1
Definition corrected and incorrect program removed by
R. J. Mathar, Feb 27 2012
A381215
Numbers k such that the difference between the largest and smallest element of the set of bases and exponents (including exponents = 1) in the prime factorization of k is 1.
Original entry on oeis.org
2, 8, 9, 36, 72, 81, 108, 216, 625, 15625, 117649, 5764801, 25937424601, 3138428376721, 23298085122481, 3937376385699289, 48661191875666868481, 14063084452067724991009, 104127350297911241532841, 37589973457545958193355601, 907846434775996175406740561329
Offset: 1
72 is a term because 72 = 2^3*3^2, the set of these bases and exponents is {2, 3} and 3 - 2 = 1.
-
Join[{2, 8, 9, 36, 72, 81, 108, 216}, Flatten[Map[#^{# - 1, # + 1} &, Prime[Range[3, 10]]]]]
A381317
Numbers of the form p^(p +- 1), where p is prime.
Original entry on oeis.org
2, 8, 9, 81, 625, 15625, 117649, 5764801, 25937424601, 3138428376721, 23298085122481, 3937376385699289, 48661191875666868481, 14063084452067724991009, 104127350297911241532841, 37589973457545958193355601, 907846434775996175406740561329, 480250763996501976790165756943041
Offset: 1
A166326
a(n) = prime(n)^(prime(n)+1) - (prime(n)+1)^prime(n).
Original entry on oeis.org
-1, 17, 7849, 3667649, 2395420006033, 3143661612445145, 11877172892329028459041, 32347093457545958193355601, 424678439961073471604787362241217
Offset: 1
a(1) = 2^3 - 3^2 = -1. a(2) = 3^4 - 4^3 = 17. a(3) = 5^6 - 6^5 = 7849.
A352081
Numbers of the form k*p^k, where k>1 and p is a prime.
Original entry on oeis.org
8, 18, 24, 50, 64, 81, 98, 160, 242, 324, 338, 375, 384, 578, 722, 896, 1029, 1058, 1215, 1682, 1922, 2048, 2500, 2738, 3362, 3698, 3993, 4374, 4418, 4608, 5618, 6591, 6962, 7442, 8978, 9604, 10082, 10240, 10658, 12482, 13778, 14739, 15309, 15625, 15842, 18818
Offset: 1
8 is a term since 8 = 2*2^2.
18 is a term since 18 = 2*3^2.
24 is a term since 24 = 3*2^3.
Subsequences:
A036289 \ {0, 2},
A036290 \ {0, 3},
A036291 \ {0, 5},
A036293 \ {0, 7},
A073113 \ {2},
A079704,
A100042,
A104126.
-
addP[p_, n_] := Module[{k = 2, s = {}, m}, While[(m = k*p^k) <= n, k++; AppendTo[s, m]]; s]; seq[max_] := Module[{m = Floor[Sqrt[max/2]], s = {}, ps}, ps = Select[Range[m], PrimeQ]; Do[s = Join[s, addP[p, max]], {p, ps}]; Sort[s]]; seq[2*10^4]
A257404
Numbers of the form p * q^p where p and q are primes, in increasing order.
Original entry on oeis.org
8, 18, 24, 50, 81, 98, 160, 242, 338, 375, 578, 722, 896, 1029, 1058, 1215, 1682, 1922, 2738, 3362, 3698, 3993, 4418, 5618, 6591, 6962, 7442, 8978, 10082, 10658, 12482, 13778, 14739, 15309, 15625, 15842, 18818
Offset: 1
(2,2):8, (2,3):18, (3,2):24, (2,5):50, (3,3):81, (2,7):98.
-
primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97];
results = [];
max = 2 * Math.pow(primes[primes.length-1],2);
for (i = 0; i < primes.length; i++) {
for (j = 0; j < primes.length; j++) {
p = primes[i];
q = primes[j];
n = p * Math.pow(q,p);
if (n <= max) {
// add it
results.push(n);
} else {
// break out of this loop
break;
}
}
}
// sort results and print them
results.sort(function(a, b){return a-b}).valueOf();
-
max=10^5; p=q=2; Sort[Reap[While[2*q^2 <= max, While[(n=p*q^p) <= max, Sow@n; p=NextPrime@p]; p=2; q=NextPrime@q ]][[2,1]]] (* Giovanni Resta, May 19 2015 *)
-
is(n)={bittest(6,#n=factor(n)~)||return;#n==1&&return(n[1,1]+1==n[2,1]);(n[2,1]==1&&n[2,2]==n[1,1])||(n[2,2]==1&&n[1,2]==n[2,1])} \\ M. F. Hasler, May 04 2015
Showing 1-8 of 8 results.
Comments