cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A368329 The largest term of A054743 that divide n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 81, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Comments

First differs from A360540 at n = 27.
The largest divisor d of n such that e > p for all prime powers p^e in the prime factorization of d (i.e., e >= 1 and p^(e+1) does not divide d).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= p, 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= f[i,1], 1, f[i,1]^f[i,2]));}

Formula

Multiplicative with a(p^e) = 1 if e <= p, and a(p^e) = p^e if e > p.
A034444(a(n)) = A368330(n).
a(n) >= 1, with equality if and only if n is in A207481.
a(n) <= n, with equality if and only if n is in A054743.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^((p+2)*s-1) - 1/p^((p+2)*(s-1)+1) - 1/p^((p+1)*s) + 1/p^((p+1)*(s-1))).

A368331 The number of divisors of the largest term of A054743 that divides of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Comments

First differs from A366145 at n = 27.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= p, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= f[i,1], 1, f[i,2]+1));}

Formula

Multiplicative with a(p^e) = 1 if e <= p, and a(p^e) = e+1 if e > p.
a(n) = A000005(A368329(n)).
a(n) >= 1, with equality if and only if n is in A207481.
a(n) <= A000005(n), with equality if and only if n is in A054743.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s - 1/p^((p+2)*s-1) + 1/p^((p+1)*s) + 1/p^((p+1)*s-1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/((p-1)*p^(p-1))) = 1.58396891058853238595... .

A368330 The number of terms of A054743 that are unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Comments

First differ from A043281 at n = 49.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= p, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= f[i,1], 1, 2));}

Formula

Multiplicative with a(p^e) = 1 if e <= p, and a(p^e) = 2 if e > p.
a(n) = A034444(A368329(n)).
a(n) >= 1, with equality if and only if n is in A207481.
a(n) <= A034444(n), with equality if and only if n is in A054743.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^((p+1)*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^(p+1)) = 1.13896197534988330925... .

A368328 The number of terms of A054743 that divide n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Comments

The number of divisors d of n such that e > p for all prime powers p^e in the prime factorization of d (i.e., e >= 1 and p^(e+1) does not divide d).
The largest of these divisors is A368329(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= p, 1, e - p + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= f[i,1], 1, f[i,2] - f[i,1] + 1));}

Formula

Multiplicative with a(p^e) = 1 if e <= p, and a(p^e) = e - p + 1 if e > p.
a(n) >= 1, with equality if and only if n is in A207481.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 1/p^((p+1)*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/((p-1)*p^p)) = 1.27325025767774256043... .

A048103 Numbers not divisible by p^p for any prime p.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Keywords

Comments

If a(n) = Product p_i^e_i then p_i > e_i for all i.
Complement of A100716; A129251(a(n)) = 0. - Reinhard Zumkeller, Apr 07 2007
Density is 0.72199023441955... = Product_{p>=2} (1 - p^-p) where p runs over the primes. - Charles R Greathouse IV, Jan 25 2012
A027748(a(n),k) <= A124010(a(n),k), 1<=k<=A001221(a(n)). - Reinhard Zumkeller, Apr 28 2012
Range of A276086. Also numbers not divisible by m^m for any natural number m > 1. - Antti Karttunen, Nov 18 2024

Examples

			6 = 2^1 * 3^1 is OK but 12 = 2^2 * 3^1 is not.
625 = 5^4 is present because it is not divisible by 5^5.
		

Crossrefs

Complement: A100716.
Positions of 0's in A129251, A342023, A376418, positions of 1's in A327936, A342007, A359550 (characteristic function).
Cf. A048102, A048104, A051674 (p^p), A054743, A054744, A377982 (a left inverse, partial sums of char. fun, see also A328402).
Cf. A276086 (permutation of this sequence, see also A376411, A376413).
Subsequences: A002110, A005117, A006862, A024451 (after its initial 0), A057588, A099308 (after its initial 0), A276092, A328387, A328832, A359547, A370114, A371083, A373848, A377871, A377992.
Disjoint union of {1}, A327934 and A358215.
Also A276078 is a subsequence, from which this differs for the first time at n=451 where a(451)=625, while that value is missing from A276078.

Programs

  • Haskell
    a048103 n = a048103_list !! (n-1)
    a048103_list = filter (\x -> and $
       zipWith (>) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
    -- Reinhard Zumkeller, Apr 28 2012
    
  • Mathematica
    {1}~Join~Select[Range@ 120, Times @@ Boole@ Map[First@ # > Last@ # &, FactorInteger@ #] > 0 &] (* Michael De Vlieger, Aug 19 2016 *)
  • PARI
    isok(n) = my(f=factor(n)); for (i=1, #f~, if (f[i,1] <= f[i,2], return(0))); return(1); \\ Michel Marcus, Nov 13 2020
    
  • PARI
    A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); }; \\ (A359550 is the characteristic function for A048103) - Antti Karttunen, Nov 18 2024
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A048103_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(map(lambda d:d[1]A048103_list = list(islice(A048103_gen(),30)) # Chai Wah Wu, Jan 05 2023
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A048103 (ZERO-POS 1 1 A129251))
    ;; Antti Karttunen, Aug 18 2016
    

Formula

a(n) ~ kn with k = 1/Product_{p>=2}(1 - p^-p) = Product_{p>=2}(1 + 1/(p^p - 1)) = 1.3850602852..., where the product is over all primes p. - Charles R Greathouse IV, Jan 25 2012
For n >= 1, A377982(a(n)) = n. - Antti Karttunen, Nov 18 2024

Extensions

More terms from James Sellers, Apr 22 2000

A207481 Numbers such that e <= p for all p^e in their prime factorization, p prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 18 2012

Keywords

Comments

Proper subsequence of A047592, a(n) = A047592(n) for n <= 70.
The asymptotic density of this sequence is Product_{p prime} 1 - 1/p^(p+1) = 0.86414207232219778408... - Amiram Eldar, Nov 24 2020

Crossrefs

Cf. A185359 (complement), A054743 (same construction, but with e > p)

Programs

  • Haskell
    a207481 n = a207481_list !! (n-1)
    a207481_list = [x | x <- [1..], and $ zipWith (<=)
                        (map toInteger $ a124010_row x) (a027748_row x) ]
  • Mathematica
    okQ[n_] := AllTrue[FactorInteger[n], #[[2]] <= #[[1]]&];
    Select[Range[100], okQ] (* Jean-François Alcover, Jun 08 2016 *)

A380088 The largest unitary divisor of n that is a term in A207481.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 27, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 54, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Jan 12 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= p, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] <= f[i, 1], f[i, 1]^f[i, 2], 1));}

Formula

Multiplicative with a(p^e) = p^e if e <= p, and 1 otherwise.
a(n) = 1 if and only if n is in A054743.
a(n) < n if and only if n is in A185359.
a(n) = n if and only if n is in A207481.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (p^(2*(p+1)) + p^(2*p+1) - p^(p+1) - p^p + 1)/(p^(2*p+1) * (p+1)) = 0.87453068804586281444... .

A380089 The number of unitary divisors of n that are terms in A207481.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 1, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 2, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4, 2, 4, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 2, 1, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 12 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= p, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~,if(f[i,2] <= f[i,1], 2, 1));}

Formula

a(n) = A034444(A380088(n)).
Multiplicative with a(p^e) = 2 if e <= p, and 1 otherwise.
a(n) = 1 if and only if n is in A054743.
a(n) < A034444(n) if and only if n is in A185359.
a(n) = A034444(n) if and only if n is in A207481.
a(n) = A377519(n) if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s - 1/p^((p+1)*s)).
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A034444(k) = Product_{p prime} (1 - 1/(2*p^(p+1))) = 0.93168306734008028353...

A380090 The sum of the unitary divisors of n that are terms in A207481.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 1, 10, 18, 12, 20, 14, 24, 24, 1, 18, 30, 20, 30, 32, 36, 24, 4, 26, 42, 28, 40, 30, 72, 32, 1, 48, 54, 48, 50, 38, 60, 56, 6, 42, 96, 44, 60, 60, 72, 48, 4, 50, 78, 72, 70, 54, 84, 72, 8, 80, 90, 60, 120, 62, 96, 80, 1, 84, 144, 68, 90, 96
Offset: 1

Views

Author

Amiram Eldar, Jan 12 2025

Keywords

Comments

First differs from A371242 at n = 27.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= p, p^e, 0] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= f[i,1], f[i,1]^f[i,2], 0) + 1);}

Formula

a(n) = A034448(A380088(n)).
Multiplicative with a(p^e) = p^e + 1 if e <= p, and 1 otherwise.
a(n) = 1 if and only if n is in A054743.
a(n) < A034448(n) if and only if n is in A185359.
a(n) = A034448(n) if and only if n is in A207481.
a(n) = A377520(n) if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (p^(p+2) + p^(p+1) + p^p - p - 1)/(p^(p+1) * (p+1)) = 1.2078161... .
Showing 1-9 of 9 results.