A203994 Symmetric matrix based on f(i,j) = (i+j)*min{i,j}, by antidiagonals.
1, 0, 0, -1, 1, -1, -2, 0, 0, -2, -3, -1, 1, -1, -3, -4, -2, 0, 0, -2, -4, -5, -3, -1, 1, -1, -3, -5, -6, -4, -2, 0, 0, -2, -4, -6, -7, -5, -3, -1, 1, -1, -3, -5, -7, -8, -6, -4, -2, 0, 0, -2, -4, -6, -8, -9, -7, -5, -3, -1, 1, -1, -3, -5, -7, -9
Offset: 1
Examples
Northwest corner: 1 0 -1 -2 -3 0 1 0 -1 -2 -1 0 1 0 -1 2 -1 0 1 0
Links
- G. C. Greubel, Antidiagonal rows n = 1..100, flattened
Programs
-
GAP
Flat(List([1..15], n-> List([1..n], k-> Minimum(2*k-n, n-2*k+2) ))); # G. C. Greubel, Jul 23 2019
-
Magma
[Min(2*k-n, n-2*k+2): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 23 2019
-
Mathematica
(* First program *) f[i_, j_] := Min[i - j + 1, j - i + 1]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[6]] (* 6 X 6 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] (* A203994 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A203995 *) TableForm[Table[c[n], {n, 1, 10}]] (* Second program *) Table[Min[2*k-n, n-2*k+2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jul 23 2019 *)
-
PARI
for(n=1,15, for(k=1,n, print1(min(2*k-n, n-2*k+2), ", "))) \\ G. C. Greubel, Jul 23 2019
-
Sage
[[min(2*k-n, n-2*k+2) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 23 2019
Comments