A204022 Symmetric matrix based on f(i,j) = max(2i-1, 2j-1), by antidiagonals.
1, 3, 3, 5, 3, 5, 7, 5, 5, 7, 9, 7, 5, 7, 9, 11, 9, 7, 7, 9, 11, 13, 11, 9, 7, 9, 11, 13, 15, 13, 11, 9, 9, 11, 13, 15, 17, 15, 13, 11, 9, 11, 13, 15, 17, 19, 17, 15, 13, 11, 11, 13, 15, 17, 19, 21, 19, 17, 15, 13, 11, 13, 15, 17, 19, 21, 23, 21, 19, 17, 15, 13, 13, 15, 17, 19, 21, 23
Offset: 1
Examples
Northwest corner: 1 3 5 7 9 3 3 5 7 9 5 5 5 7 9 7 7 7 7 9 9 9 9 9 9
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
Flat(List([1..12], n-> List([1..n], k-> Maximum(2*k-1, 2*(n-k)+1) ))); # G. C. Greubel, Jul 23 2019
-
Magma
[[Max(2*k-1, 2*(n-k)+1): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 23 2019
-
Mathematica
(* First program *) f[i_, j_] := Max[2 i - 1, 2 j - 1]; m[n_] := Table[f[i, j], {i, n}, {j, n}] TableForm[m[6]] (* 6 X 6 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 15}, {i, n}]] (* A204022 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 10}]]] Table[c[n], {n, 12}] Flatten[%] (* A204023 *) TableForm[Table[c[n], {n, 10}]] (* Second program *) Table[Max[2*k-1, 2*(n-k)+1], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 23 2019 *)
-
PARI
{T(n, k) = max(2*k-1, 2*(n-k)+1)}; for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jul 23 2019
-
Python
from math import isqrt def A204022(n): return (m:=isqrt(n<<3)+1>>1)+abs(m**2-(n<<1)+1) # Chai Wah Wu, Jun 08 2025
-
Sage
[[max(2*k-1, 2*(n-k)+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 23 2019
Formula
From Ridouane Oudra, May 27 2019: (Start)
a(n) = t + |t^2-2n+1|, where t = floor(sqrt(2n-1)+1/2).
a(n) = A209302(2n-1).
a(n) = t + |t^2-2n+1|, where t = floor(sqrt(2n)+1/2). (End)
Comments