cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A204043 Circle Gaussian integer factorial, product of all Gaussian integers except 0 having an absolute value less than or equal to n.

Original entry on oeis.org

-1, 64, -207360000, 15161366937600000000, -16026514807440384000000000000000000000000, 9186394651457723405912022826165758590976000000000000000000000000
Offset: 1

Views

Author

Alonso del Arte, Jan 09 2012

Keywords

Comments

Called "circle" because drawing a circle on the complex plane centered at 0 with radius n encloses the integers (with the exception of 0) that will be considered in computing a(n).
All terms of this sequence are purely real numbers.

Examples

			a(1) = 1 * i * -1 * -i = -1. (Note that numbers like -1 + i are ignored here).
a(5) = 5 * (4 + 3i) * (3 + 4i) * 5i * (-3 + 4i) * (-4 + 3i) * ... (Note that the absolute value of numbers like 4 + 3i is precisely 5).
		

Crossrefs

Cf. A204041, square factorial; A204044, lozenge factorial.

Programs

  • Mathematica
    Table[Times@@Select[ReplaceAll[Flatten[Table[a + b I, {a, -n, n}, {b, -n, n}]], 0 -> 1], Abs[#] <= n &], {n, 10}]

A204044 Lozenge Gaussian integer factorial, product of all nonzero Gaussian integers a + bi for which |a| + |b| <= n.

Original entry on oeis.org

-1, 64, -3240000, 530841600000000, -791432829997056000000000000, 24298387172648346846064803840000000000000000, -30208456145049398593072092383690495361024000000000000000000000000
Offset: 1

Views

Author

Alonso del Arte, Jan 09 2012

Keywords

Comments

Called "lozenge" because the Gaussian integers considered here form up a lozenge or diamond in the complex plane.
All terms are purely real integers.

Examples

			a(2) = -2 * (-1 - i) * -1 * (-1 + i) * -2i * -i * i * 2i * (1 - i) * 1 * (1 + i) * 2 = 64. (Note that numbers like -2 + i are skipped over in the computation of a(2) because abs(-2) + abs(1) > 2).
		

Crossrefs

Cf. A204041, square factorial; A204043, circle factorial.

Programs

  • Mathematica
    Table[Times@@Select[ReplaceAll[Flatten[Table[a + b I, {a, -n, n}, {b, -n, n}]], 0 -> 1], Abs[Re[#]] + Abs[Im[#]] <= n&], {n, 10}]
  • PARI
    a(n)=(-1)^n*prod(i=1,n,prod(j=1,n-i,i^2+j^2))^2*n!^4 \\ Charles R Greathouse IV, May 01 2012

Formula

log |a(n)| ~ 2n^2 log n. - Charles R Greathouse IV, May 01 2012

A236988 Real part of the product of all the Gaussian integers in the rectangle [1, 1] to [2, n].

Original entry on oeis.org

1, -20, 140, 200, -67600, 3983200, -228488000, 14375920000, -1002261520000, 74864404160000, -5398716356800000, 221997813232000000, 54286859023072000000, -27326116497867200000000, 9481971502321385600000000, -3155347494162485190400000000
Offset: 1

Views

Author

Jon Perry, Feb 02 2014

Keywords

Comments

By Gaussian integers, we mean complex numbers of the form a + bi, where both a and b are integers in Z, i = sqrt(-1). Thus the quadratic integer ring under consideration here is Z[i].

Examples

			For n = 2, we have (1 + i)(1 + 2i)(2 + i)(2 + 2i) which gives -20 + 0i, so a(2) = -20.
		

Crossrefs

Programs

  • JavaScript
    function cNumber(x, y) {
    return [x, y];
    }
    function cMult(a, b) {
    return [a[0] * b[0] - a[1] * b[1], a[0] * b[1] + a[1] * b[0]];
    }
    for (i = 1; i < 20; i++) {
    c = cNumber(1, 0);
    for (j = 1; j <= 2; j++)
    for (k = 1; k <= i; k++)
    c = cMult(c, cNumber(j, k));
    document.write(c[0] + ", ");
    }
    
  • Mathematica
    Table[Re[Times@@Flatten[Table[a + b I, {a, 2}, {b, n}]]], {n, 20}] (* Alonso del Arte, Feb 02 2014 *)
  • PARI
    a(n) = real(prod(i=1, 2, prod(j=1, n, i+I*j))); \\ Michel Marcus, Feb 03 2014

Formula

a(n) +(2*n+3)*(n-2)*a(n-1) +n*(n+1)*(n^2-4*n+8)*a(n-2) -2*(n^2-4*n+8)*(n^2-4*n+5)*a(n-3)=0. - R. J. Mathar, Feb 08 2014
Showing 1-3 of 3 results.