cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204060 G.f.: Sum_{n>=1} Fibonacci(n^2)*x^(n^2).

Original entry on oeis.org

1, 0, 0, 3, 0, 0, 0, 0, 34, 0, 0, 0, 0, 0, 0, 987, 0, 0, 0, 0, 0, 0, 0, 0, 75025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14930352, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7778742049, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10610209857723, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37889062373143906
Offset: 1

Views

Author

Paul D. Hanna, Jan 12 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} lambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2).
Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).

Examples

			G.f.: A(x) = x + 3*x^4 + 34*x^9 + 987*x^16 + 75025*x^25 + 14930352*x^36 +...
where A(x) = x/(1-x-x^2) + (-1)*1*x^2/(1-3*x^2+x^4) + (-1)*2*x^3/(1-4*x^3-x^6) + (+1)*3*x^4/(1-7*x^4+x^8) + (-1)*5*x^5/(1-11*x^5-x^10) + (+1)*8*x^6/(1-18*x^6+x^12) +...+ lambda(n)*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Cf. A203847, A054783, A008836 (lambda), A000204 (Lucas), A000045.
Cf. A209614 (variant).

Programs

  • PARI
    {a(n)=issquare(n)*fibonacci(n)}
    
  • PARI
    {lambda(n)=local(F=factor(n));(-1)^sum(i=1,matsize(F)[1],F[i,2])}
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1,n,lambda(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} lambda(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)), where lambda(n) = A008836(n) and Lucas(n) = A000204(n).