cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A203847 a(n) = tau(n)*Fibonacci(n), where tau(n) = A000005(n), the number of divisors of n.

Original entry on oeis.org

1, 2, 4, 9, 10, 32, 26, 84, 102, 220, 178, 864, 466, 1508, 2440, 4935, 3194, 15504, 8362, 40590, 43784, 70844, 57314, 370944, 225075, 485572, 785672, 1906866, 1028458, 6656320, 2692538, 13069854, 14098312, 22811548, 36909860, 134373168, 48315634, 156352676, 252983944
Offset: 1

Views

Author

Paul D. Hanna, Jan 11 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} x^n/(1-x^n) = Sum_{n>=1} tau(n)*x^n.
Related identities:
(1) Sum_{n>=1} n^k*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_{k}(n)*Fibonacci(n)*x^n for k>=0.
(2) Sum_{n>=1} phi(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Fibonacci(n)*x^n.
(3) Sum_{n>=1} moebius(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = x.
(4) Sum_{n>=1} lambda(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} Fibonacci(n^2)*x^(n^2).

Examples

			G.f.: A(x) = x + 2*x^2 + 4*x^3 + 9*x^4 + 10*x^5 + 32*x^6 + 26*x^7 +...
where A(x) = x/(1-x-x^2) + x^2/(1-3*x^2+x^4) + 2*x^3/(1-4*x^3-x^6) + 3*x^4/(1-7*x^4+x^8) + 5*x^5/(1-11*x^5-x^10) + 8*x^6/(1-18*x^6+x^12) +...+ Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, n]*Fibonacci[n], {n, 50}] (* G. C. Greubel, Jul 17 2018 *)
  • PARI
    {a(n)=sigma(n,0)*fibonacci(n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1,n,fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    
  • PARI
    a(n) = numdiv(n)*fibonacci(n); \\ Michel Marcus, Jul 18 2018

Formula

G.f.: Sum_{n>=1} Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} tau(n)*Fibonacci(n)*x^n, where Lucas(n) = A000204(n).

A204274 G.f.: Sum_{n>=1} Pell(n^2)*x^(n^2).

Original entry on oeis.org

1, 0, 0, 12, 0, 0, 0, 0, 985, 0, 0, 0, 0, 0, 0, 470832, 0, 0, 0, 0, 0, 0, 0, 0, 1311738121, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21300003689580, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2015874949414289041, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} lambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2); Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).

Examples

			G.f.: A(x) = x + 12*x^4 + 985*x^9 + 470832*x^16 + 1311738121*x^25 +...
where A(x) = x/(1-2*x-x^2) + (-1)*2*x^2/(1-6*x^2+x^4) + (-1)*5*x^3/(1-14*x^3-x^6) + (+1)*12*x^4/(1-34*x^4+x^8) + (-1)*29*x^5/(1-82*x^5-x^10) + (+1)*70*x^6/(1-198*x^6+x^12) +...+ lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Maple
    pell:= gfun:-rectoproc({a(0)=0,a(1)=1,a(n)=2*a(n-1)+a(n-2)},a(n),remember):
    seq(`if`(issqr(n),pell(n),0), n=1..100); # Robert Israel, Nov 24 2015
  • Mathematica
    CoefficientList[Sum[Fibonacci[n^2, 2] x^n^2/x, {n, 1, 8}], x] (* Jean-François Alcover, Mar 25 2019 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=issquare(n)*Pell(n)}
    
  • PARI
    {lambda(n)=local(F=factor(n));(-1)^sum(i=1,matsize(F)[1],F[i,2])}
    {a(n)=polcoeff(sum(m=1,n,lambda(m)*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where lambda(n) = A008836(n), Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A205507 a(n) = Fibonacci(n) * A004018(n) for n>=1 with a(0)=1, where A004018(n) is the number of ways of writing n as a sum of 2 squares.

Original entry on oeis.org

1, 4, 4, 0, 12, 40, 0, 0, 84, 136, 440, 0, 0, 1864, 0, 0, 3948, 12776, 10336, 0, 54120, 0, 0, 0, 0, 900300, 971144, 0, 0, 4113832, 0, 0, 8713236, 0, 45623096, 0, 59721408, 193262536, 0, 0, 818673240, 1324641128, 0, 0, 0, 9079225360, 0, 0, 0, 31114968196
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2012

Keywords

Comments

Compare to the g.f. of A004018 given by the Lambert series identity:
1 + 4*Sum_{n>=0} (-1)^n*x^(2*n+1)/(1 - x^(2*n+1)) = (1 + 2*Sum_{n>=1} x^(n^2))^2.

Examples

			G.f.: A(x) = 1 + 4*x + 4*x^2 + 12*x^4 + 40*x^5 + 84*x^8 + 136*x^9 + 440*x^10 +...
Compare the g.f to the square of the Jacobi theta_3 series:
theta_3(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 + 4*x^9 + 8*x^10 +...+ A004018(n)*x^n +...
The g.f. equals the sum:
A(x) = 1 + 4*x/(1-x-x^2) - 4*2*x^3/(1-4*x^3-x^6) + 4*5*x^5/(1-11*x^5-x^10) - 4*13*x^7/(1-29*x^7-x^14) + 4*34*x^9/(1-76*x^9-x^18) - 4*89*x^11/(1-199*x^11-x^22) + 4*233*x^13/(1-521*x^13-x^26) - 4*610*x^15/(1-1364*x^15-x^30) +...
which involves odd-indexed Fibonacci and Lucas numbers.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Fibonacci[n]*SquaresR[2, n], {n,1,50}]] (* G. C. Greubel, Mar 05 2017 *)
  • PARI
    {A004018(n)=polcoeff((1+2*sum(k=1,sqrtint(n+1),x^(k^2),x*O(x^n)))^2,n)}
    {a(n)=if(n==0,1,fibonacci(n)*A004018(n))}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff((1+4*sum(m=0,n+1,(-1)^m*fibonacci(2*m+1)*x^(2*m+1)/(1-Lucas(2*m+1)*x^(2*m+1)-x^(4*m+2)+x*O(x^n)))),n)}

Formula

G.f.: 1 + 4*Sum_{n>=0} (-1)^n*Fibonacci(2*n+1)*x^(2*n+1) / (1 - Lucas(2*n+1)*x^(2*n+1) - x^(4*n+2)), where Lucas(n) = A000204(n).

A209614 G.f.: Sum_{n>=1} Fibonacci(n^3)*x^(n^3).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 196418, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10610209857723, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Paul D. Hanna, Apr 07 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} A210826(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^3), where A210826(n) = kronecker(-3,d(n)) and d(n) is the number of divisors of n.

Examples

			G.f.: A(x) = x + 21*x^8 + 196418*x^27 + 10610209857723*x^64 + 59425114757512643212875125*x^125 +...
where A(x) = x/(1-x-x^2) + (-1)*1*x^2/(1-3*x^2+x^4) + (-1)*2*x^3/(1-4*x^3-x^6) + (0)*3*x^4/(1-7*x^4+x^8) + (-1)*5*x^5/(1-11*x^5-x^10) + (+1)*8*x^6/(1-18*x^6+x^12)+ (-1)*13*x^7/(1-29*x^7-x^14) + (+1)*21*x^8/(1-47*x^8+x^16) + (0)*34*x^9/(1-76*x^9-x^18) + (+1)*55*x^10/(1-123*x^10+x^20)+ (-1)*89*x^11/(1-199*x^11-x^22) +...+ A210826(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
The sequence A210826(n) = kronecker(-3, d(n)) begins:
[1,-1,-1,0,-1,1,-1,1,0,1,-1,0,-1,1,1,-1,-1,0,-1,0,1,1,-1,-1,0,1,1,...].
		

Crossrefs

Programs

  • PARI
    {A210826(n)=if(n==0,0,kronecker(-3,numdiv(n)))}
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1, n, A210826(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
    for(n=1,125,print1(a(n),", "))

Formula

G.f.: Sum_{n>=1} A210826(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} Fibonacci(n^3)*x^(n^3).
Showing 1-4 of 4 results.