A204087 Reduced Pascal triangle: C_R(n,m) = A003418(n) / max(A003418(m), A003418(n-m)), m=0,...,n.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 6, 2, 1, 1, 5, 10, 10, 5, 1, 1, 1, 5, 10, 5, 1, 1, 1, 7, 7, 35, 35, 7, 7, 1, 1, 2, 14, 14, 70, 14, 14, 2, 1, 1, 3, 6, 42, 42, 42, 42, 6, 3, 1, 1, 1, 3, 6, 42, 42, 42, 6, 3, 1, 1, 1, 11, 11, 33, 66, 462, 462, 66, 33, 11, 11, 1
Offset: 0
Examples
Triangle begins: n/m.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1.....2.....1 .3..|..1.....3.....3.....1 .4..|..1.....2.....6.....2.....1 .5..|..1.....5....10....10.....5.....1 .6..|..1.....1.....5....10.....5.....1.....1 .7..|..1.....7.....7....35....35.....7.....7.....1
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, ilcm(g(n-1), n)) end: CR:= proc(n, m) option remember; g(n)/max(g(m), g(n-m)) end: seq (seq (CR(n,m), m=0..n), n=0..11); # Alois P. Heinz, Jan 11 2012
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, LCM[g[n-1], n]]; CR[n_, m_] := CR[n, m] = g[n]/Max[ g[m], g[n-m]]; Table[Table[CR[n, m], {m, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Mar 12 2015, after Alois P. Heinz *)
Comments