A204185 Number of quadrilaterals in a triangular matchstick arrangement of side n.
0, 0, 6, 33, 102, 243, 492, 894, 1500, 2370, 3570, 5175, 7266, 9933, 13272, 17388, 22392, 28404, 35550, 43965, 53790, 65175, 78276, 93258, 110292, 129558, 151242, 175539, 202650, 232785, 266160, 303000, 343536, 388008, 436662, 489753, 547542, 610299, 678300, 751830, 831180, 916650, 1008546, 1107183, 1212882, 1325973, 1446792, 1575684, 1713000, 1859100, 2014350
Offset: 0
Examples
a(3) = 33 because the following figure contains 33 quadrilaterals (15 parallelograms and 18 trapezoids) ....... /\ ...... /\/\ ..... /\/\/\ Size and quantity of each quadrilateral in above figure: 2 triangles: 9 3 triangles: 12 4 triangles: 6 5 triangles: 3 8 triangles: 3
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).
Crossrefs
Cf. A173196 = number of rhombuses of a particular orientation; A001752, related to number of irregular parallelograms and number of 'upside down' trapezoids; A000332, related to number of 'right side up' trapezoids (see comments above); A002717 = number of triangles in a triangular matchstick arrangement; A000217 = triangular numbers.
Programs
-
Mathematica
nxt[{n_,a_}]:={n+1,a+Floor[n(n+2) (10(n+1)-3)/8]}; Transpose[ NestList[ nxt,{0,0},50]][[2]] (* Harvey P. Dale, Jan 11 2013 *)
-
PARI
concat([0,0], Vec(-3*x^2*(3*x+2)/((x-1)^5*(x+1)) + O(x^100))) \\ Colin Barker, Mar 16 2015
Formula
a(n) = Sum_{k=1..n-1} b(k)*T(n-k), where b(m) = 3*floor(5*m/2) and T(m) is the m-th triangular number A000217.
a(n) = a(n-1) + floor((n+1)*(n-1)*(10*n-3)/8).
From Colin Barker, Mar 16 2015: (Start)
a(n) = (3-3*(-1)^n-16*n-16*n^2+16*n^3+10*n^4)/32.
a(n) = 4*a(n-1)-5*a(n-2)+5*a(n-4)-4*a(n-5)+a(n-6).
G.f.: -3*x^2*(3*x+2) / ((x-1)^5*(x+1)). (End)
E.g.f.: (x*(5*x^3 + 38*x^2 + 51*x - 3)*cosh(x) + (5*x^4 + 38*x^3 + 51*x^2 - 3*x + 3)*sinh(x))/16. - Stefano Spezia, Jul 19 2022
Comments