cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204208 Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than 3.

Original entry on oeis.org

1, 4, 16, 78, 404, 2208, 12492, 72589, 430569, 2596471, 15870357, 98102191, 612222083, 3852015239, 24408653703, 155629858911, 997744376239, 6427757480074, 41590254520410, 270163621543421, 1761179219680657
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2012

Keywords

Comments

Column 3 of A204213
Number of excursions (walks starting at the origin, ending on the x-axis, and never go below the x-axis in between) with n steps from {-3,-2,-1,0,1,2,3}. - David Nguyen, Dec 16 2016

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....1....3....3....2....2....1....2....0....0....2....3....0....3....1....2
..5....3....2....2....2....3....1....5....3....0....2....4....3....2....0....3
..2....6....3....4....0....1....0....6....5....1....0....6....5....2....2....5
..2....3....3....3....2....3....3....3....2....1....0....3....3....0....3....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[(Sum[Binomial[i, j] Binomial[-7j + 4i - 1, 3i - 7j] (-1)^j, {j, 0, (3i)/7}]) a[n - i], {i, 1, n}]/n];
    a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n=0 then 1 else sum((sum(binomial(i,j)*binomial(-7*j+4*i-1,3*i-7*j)*(-1)^j,j,0,(3*i)/7))*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 06 2017 */
  • PARI
    {A025012(n)=polcoeff((1+x+x^2+x^3+x^4+x^5+x^6 +x*O(x^(3*n)))^n,3*n)}
    {a(n)=polcoeff(exp(sum(m=1,n,A025012(m)*x^m/m)+x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Aug 01 2013
    

Formula

G.f.: exp( Sum_{n>=1} A025012(n)*x^n/n ) - 1, where A025012(n) = central coefficient of (1+x+x^2+x^3+x^4+x^5+x^6)^n. - Paul D. Hanna, Aug 01 2013
a(n) = Sum_{i=1..n}((Sum_{j=0..(3*i)/7}(binomial(i,j)*binomial(-7*j+4*i-1,3*i-7*j)*(-1)^j))*a(n-i))/n. - Vladimir Kruchinin, Apr 06 2017