A204208
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than 3.
Original entry on oeis.org
1, 4, 16, 78, 404, 2208, 12492, 72589, 430569, 2596471, 15870357, 98102191, 612222083, 3852015239, 24408653703, 155629858911, 997744376239, 6427757480074, 41590254520410, 270163621543421, 1761179219680657
Offset: 1
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....1....3....3....2....2....1....2....0....0....2....3....0....3....1....2
..5....3....2....2....2....3....1....5....3....0....2....4....3....2....0....3
..2....6....3....4....0....1....0....6....5....1....0....6....5....2....2....5
..2....3....3....3....2....3....3....3....2....1....0....3....3....0....3....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
- R. H. Hardin, Table of n, a(n) for n = 1..210
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
-
a[n_] := a[n] = If[n == 0, 1, Sum[(Sum[Binomial[i, j] Binomial[-7j + 4i - 1, 3i - 7j] (-1)^j, {j, 0, (3i)/7}]) a[n - i], {i, 1, n}]/n];
a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
-
a(n):=if n=0 then 1 else sum((sum(binomial(i,j)*binomial(-7*j+4*i-1,3*i-7*j)*(-1)^j,j,0,(3*i)/7))*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 06 2017 */
-
{A025012(n)=polcoeff((1+x+x^2+x^3+x^4+x^5+x^6 +x*O(x^(3*n)))^n,3*n)}
{a(n)=polcoeff(exp(sum(m=1,n,A025012(m)*x^m/m)+x*O(x^n)),n)}
for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Aug 01 2013
A204209
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than 4.
Original entry on oeis.org
1, 5, 25, 155, 1025, 7167, 51945, 387000, 2944860, 22791189, 178840639, 1419569398, 11377983292, 91957314063, 748575327757, 6132254500856, 50514620902564, 418174191239443, 3477075679541185, 29026557341147912, 243184916545458556
Offset: 1
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..3....3....3....2....1....2....4....4....3....3....2....2....0....1....4....4
..0....2....5....1....3....0....2....2....2....5....1....0....3....5....3....6
..0....1....6....2....4....3....1....3....3....2....2....1....3....3....1....3
..3....3....3....2....3....3....3....4....2....3....0....1....3....1....2....0
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
- R. H. Hardin, Table of n, a(n) for n = 1..210
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
-
a[n_] := a[n] = If[n == 0, 1, Sum[(Sum[Binomial[i, j] Binomial[-9j + 5i - 1, 4i - 9j] (-1)^j, {j, 0, (4i)/9}]) a[n - i], {i, 1, n}]/n];
a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
-
a(n):=if n=0 then 1 else sum((sum(binomial(i,j)*binomial(-9*j+5*i-1,4*i-9*j)*(-1)^j,j,0,(4*i)/9))*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 06 2017 */
A204210
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than 5.
Original entry on oeis.org
1, 6, 36, 271, 2181, 18583, 164255, 1493142, 13868334, 131040555, 1255641305, 12172468671, 119167633383, 1176491130191, 11699794149335, 117092364762013, 1178452895921961, 11919463485729722, 121096865173987004
Offset: 1
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....3....5....3....4....0....5....4....2....3....4....3....4....5....4....1
..2....1....9....1....7....4....7....8....5....3....3....6....3....2....1....3
..1....1....7....3....5....3....8....5....8....7....6....1....2....3....0....3
..4....0....3....2....5....2....4....0....4....5....1....0....1....2....2....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
A204211
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than 6.
Original entry on oeis.org
1, 7, 49, 434, 4116, 41363, 431445, 4629851, 50775347, 566592411, 6412416619, 73428973184, 849204106870, 9904511238159, 116368090860251, 1375981128400665, 16362074062371685, 195540534817518299, 2347344805869798781
Offset: 1
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..4....3....3....0....5....0....0....4....2....3....6....4....1....6....6....2
..9....1....6....5....1....1....4....5....5....6...12....1....0....2....0....2
..4....3...10....6....4....4....2....1....4....5...11....6....4....3....1....8
..5....1....5....5....1....1....5....0....1....5....6....1....1....5....0....5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
A204212
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than 7.
Original entry on oeis.org
1, 8, 64, 652, 7120, 82440, 991152, 12262470, 155072356, 1995610260, 26048900628, 344054761656, 4589736845308, 61750810543324, 836935922008844, 11416462124627925, 156613134014878257, 2159264087976308543
Offset: 1
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..4....2....7....4....7....6....4....6....4....4....2....4....6....3....1....4
..6....0....9....7....9....6....0....4....3....4....6....5....6....9....6...10
..6....2...14....7...12....8....7....2....4....8....2....8....4....5....2...12
..5....7....7....7....6....1....2....7....4....6....4....5....4....2....5....5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
A204214
Number of length 6 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than n.
Original entry on oeis.org
21, 120, 404, 1025, 2181, 4116, 7120, 11529, 17725, 26136, 37236, 51545, 69629, 92100, 119616, 152881, 192645, 239704, 294900, 359121, 433301, 518420, 615504, 725625, 849901, 989496, 1145620, 1319529, 1512525, 1725956, 1961216, 2219745
Offset: 1
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..4....0....2....2....0....5....0....3....5....0....4....5....4....1....1....3
..1....4....2....2....3....2....2....6....1....5....8...10....8....2....3....5
..4....3....7....1....2....0....3....5....5....4....6...10....3....6....3....6
..2....4....5....3....4....3....0....5....2....5....3....5....4....2....4....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
A204215
Number of length 7 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than n.
Original entry on oeis.org
51, 473, 2208, 7167, 18583, 41363, 82440, 151125, 259459, 422565, 659000, 991107, 1445367, 2052751, 2849072, 3875337, 5178099, 6809809, 8829168, 11301479, 14298999, 17901291, 22195576, 27277085, 33249411, 40224861, 48324808, 57680043
Offset: 1
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..3....1....3....3....5....5....4....2....4....4....4....0....4....1....0....3
..5....6....5....4....6....5....2....3....3....8....9....0....3....3....1....5
..4....4....3....3....6....7....4....6....5....7....7....3....6....4....5....5
..5....5....7....2....8....7....4....1....4....4....6....1....5....0....0....2
..3....1....5....0....3....5....0....1....0....0....4....5....2....2....3....1
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
A204216
Number of length 8 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than n.
Original entry on oeis.org
127, 1925, 12492, 51945, 164255, 431445, 991152, 2057553, 3945655, 7098949, 12120428, 19806969, 31187079, 47562005, 70550208, 102135201, 144716751, 201165445, 274880620, 369851657, 490722639, 642860373, 832425776, 1066448625
Offset: 1
Some solutions for n=4:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....3....3....2....3....2....3....4....1....4....4....4....1....4....3....3
..3....5....0....2....2....0....6....0....1....4....8....8....1....6....5....2
..4....4....1....5....5....2....8....2....1....5....5....4....0....9....7....3
..4....5....3....7....6....3....6....6....4....2....3....2....1....6...10....1
..7....4....6....7....6....2....2....3....3....0....6....1....3....2....6....2
..4....2....4....4....3....0....2....4....2....1....4....0....4....1....3....1
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
Showing 1-8 of 8 results.
Comments