cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204342 a(n) = (-1)^n * Sum_{2*m + 1 | 2*n + 1} (-1)^m (2*m + 1)^4.

Original entry on oeis.org

1, 80, 626, 2400, 6481, 14640, 28562, 50080, 83522, 130320, 192000, 279840, 391251, 524960, 707282, 923520, 1171200, 1502400, 1874162, 2284960, 2825762, 3418800, 4057106, 4879680, 5762401, 6681760, 7890482, 9164640, 10425600
Offset: 0

Views

Author

Michael Somos, Jan 14 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 80*x + 626*x^2 + 2400*x^3 + 6481*x^4 + 14640*x^5 + 28562*x^6 + ...
q + 80*q^3 + 626*q^5 + 2400*q^7 + 6481*q^9 + 14640*q^11 + 28562*q^13 + ...
a(1) = 80 since (-1)^1 * ( (-1)^0 * 1^4 + (-1)^1 * 3^4) = 80 where 1 and 3 are the odd divisors of 3 = 2*1 + 1.
		

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 315.

Crossrefs

Programs

  • Mathematica
    QP:= QPochhammer[q]; a[n_]:= SeriesCoefficient[QP[q^2]^14* (QP[q]^8 + 80*q*QP[q^4]^8)/(QP[q]^8*QP[q^4]^4), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 11 2018 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, (-1)^(d\2) *  d^4))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^14 * (eta(x + A)^8 + 80 * x * eta(x^4 + A)^8) / (eta(x + A)^8 * eta(x^4 + A)^4), n))}

Formula

Expansion of phi(x)^4 * psi(x^2)^2 * (phi(x)^4 + 64 * x * psi(x^2)^4) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q^2)^14 * (eta(q)^8 + 80 * q * eta(q^4)^8) / (eta(q)^8 * eta(q^4)^4) in powers of q.
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = ((p^4)^(e+1) + 1) / (p^4 + 1) if p == 3 (mod 4), b(p^e) = ((p^4)^(e+1) - 1) / (p^4 - 1) if p == 1 (mod 4).
G.f.: Sum_{k > 0} (2*k - 1)^4 * x^(2*k - 1) / (1 + x^(4*k - 2)).
a(n) = A050468(2*n + 1).
Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^5/96 = 3.187705... . - Amiram Eldar, Dec 29 2023