A204371 Maximum period of cellular automaton rule 110 in a cyclic universe of width n.
1, 1, 1, 2, 1, 9, 14, 16, 7, 25, 110, 18, 351, 91, 295, 32, 578, 81, 285, 240, 630, 462, 1058, 552, 300, 351, 567, 2156, 1044, 1770, 2759, 2368, 1100, 969, 3920, 1584
Offset: 1
Examples
The 12 cell pattern 000100110111 001101111101 011111000111 110001001101 010011011111 110111110001 011100010011 110100110111 011101111100 110111000100 111101001101 000111011111 001101110001 011111010011 110001110111 010011011100 110111110100 111100011101 000100110111 Has period 18, which is the maximum possible, so a(12)=18
Links
- Eric Weisstein's World of Mathematics, Rule 110
- Index entries for sequences related to cellular automata
Programs
-
Mathematica
f[list_] := -Subtract @@ Flatten[Map[Position[#, #[[-1]]] &, NestWhileList[CellularAutomaton[110], list, Unequal, All], {0}]]; ma[n_] := Max[Table[f[IntegerDigits[i, 2, n]], {i, 0, 2^n - 1}]]; Table[ma[n], {n, 1, 10}]
Extensions
a(19)-a(36) from Lars Blomberg, Dec 24 2015
Comments