A204382
G.f.: Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n)) where A002203(n) is the companion Pell numbers.
Original entry on oeis.org
1, -2, -7, -2, 1, 82, 34, 464, 198, -82, -1, 0, -39208, -16238, 6725, -551614, -228486, 95120, 0, 82, 6726, 0, 263673800, 109216786, -45239073, 0, 8957108166, 3706940654, -1536796802, -551614, -1, -109216786, 0, -18738638, -6726, -24954506565518, -10336495061766
Offset: 0
G.f.: A(x) = 1 - 2*x - 7*x^2 - 2*x^3 + x^4 + 82*x^5 + 34*x^6 + 464*x^7 +...
-log(A(x)) = 1*2*x + 3*6*x^2/2 + 4*14*x^3/3 + 7*34*x^4/4 + 6*82*x^5/5 + 12*198*x^6/6 +...+ sigma(n)*A002203(n)*x^n/n +...
The g.f. equals the product:
A(x) = (1-2*x-x^2) * (1-6*x^2+x^4) * (1-14*x^3-x^6) * (1-34*x^4+x^8) * (1-82*x^5-x^10) * (1-198*x^6+x^12) *...* (1 - A002203(n)*x^n + (-1)^n*x^(2*n)) *...
Positions of zeros form A093519:
[11,18,21,25,32,39,43,46,49,54,60,65,67,68,74,76,81,87,88,90,...].
which are numbers that are not the sum of two generalized pentagonal numbers.
-
/* Subroutine used in PARI programs below: */
{A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
-
{a(n)=polcoeff(exp(sum(k=1, n, -sigma(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n, 1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n)), n)}
A204384
G.f.: Product_{n>=1} (1 - A002203(n)*x^n + (-x^2)^n) / (1 + A002203(n)*x^n + (-x^2)^n) where A002203(n) is the companion Pell numbers.
Original entry on oeis.org
1, -4, -4, 0, 68, 56, 0, 0, 4, -5572, -4616, 0, 0, -328, 0, 0, 2663428, 2206456, -4, 0, 156808, 0, 0, 0, 0, -7420309452, -6147187208, 0, 0, -436867144, 0, 0, 4, 0, -5326856, 0, 120491016385604, 99818026262072, 0, 0, 7093848711176, -11144, 0, 0, 0, 86497488056, 0, 0, 0
Offset: 0
G.f.: A(x) = 1 - 4*x - 4*x^2 + 68*x^4 + 56*x^5 + 4*x^8 - 5572*x^9 - 4616*x^10 +...
-log(A(x)) = 2*2*x + 4*6*x^2/2 + 8*14*x^3/3 + 8*34*x^4/4 + 12*82*x^5/5 + 16*198*x^6/6 +...+ (sigma(2*n)-sigma(n))*A002203(n)*x^n/n +...
Compare to the logarithm of Jacobi theta4 H(x) = 1 + 2*Sum_{n>=1} (-1)^n*q^(n^2):
-log(H(x)) = 2*x + 4*x^2/2 + 8*x^3/3 + 8*x^4/4 + 12*x^5/5 + 16*x^6/6 + 16*x^7/7 +...+ (sigma(2*n)-sigma(n))*x^n/n +...
The g.f. equals the products:
A(x) = (1-2*x-x^2)/(1+2*x-x^2) * (1-6*x^2+x^4)/(1+6*x^2+x^4) * (1-14*x^3-x^6)/(1+14*x^3-x^6) * (1-34*x^4+x^8)/(1+34*x^4+x^8) * (1-82*x^5-x^10)/(1+82*x^5-x^10) *...* (1 - A002203(n)*x^n + (-x^2)^n)/(1 + A002203(n)*x^n + (-x^2)^n) *...
A(x) = (1-2*x-x^2)^2 * (1-6*x^2+x^4) * (1-14*x^3-x^6)^2 * (1-34*x^4+x^8) * (1-82*x^5-x^10)^2 *(1-198*x^6+x^12) * (1-478*x^7-x^14)^2 * (1-1154*x^8+x^16) *...
Positions of zeros form A022544:
[3,6,7,11,12,14,15,19,21,22,23,24,27,28,30,31,33,35,38,39,42,43,44,...]
which are numbers that are not the sum of 2 squares.
-
/* Subroutine used in PARI programs below: */
{A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n, 1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))/prod(m=1, n, 1 + A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n\2+1, (1 - A002203(2*m-1)*x^(2*m-1) - x^(4*m-2))^2*(1 - A002203(2*m)*x^(2*m) + x^(4*m) +x*O(x^n))), n)}
-
{a(n)=polcoeff(exp(sum(k=1, n,-(sigma(2*k)-sigma(k))*A002203(k)*x^k/k)+x*O(x^n)), n)}
Showing 1-2 of 2 results.
Comments