A204382
G.f.: Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n)) where A002203(n) is the companion Pell numbers.
Original entry on oeis.org
1, -2, -7, -2, 1, 82, 34, 464, 198, -82, -1, 0, -39208, -16238, 6725, -551614, -228486, 95120, 0, 82, 6726, 0, 263673800, 109216786, -45239073, 0, 8957108166, 3706940654, -1536796802, -551614, -1, -109216786, 0, -18738638, -6726, -24954506565518, -10336495061766
Offset: 0
G.f.: A(x) = 1 - 2*x - 7*x^2 - 2*x^3 + x^4 + 82*x^5 + 34*x^6 + 464*x^7 +...
-log(A(x)) = 1*2*x + 3*6*x^2/2 + 4*14*x^3/3 + 7*34*x^4/4 + 6*82*x^5/5 + 12*198*x^6/6 +...+ sigma(n)*A002203(n)*x^n/n +...
The g.f. equals the product:
A(x) = (1-2*x-x^2) * (1-6*x^2+x^4) * (1-14*x^3-x^6) * (1-34*x^4+x^8) * (1-82*x^5-x^10) * (1-198*x^6+x^12) *...* (1 - A002203(n)*x^n + (-1)^n*x^(2*n)) *...
Positions of zeros form A093519:
[11,18,21,25,32,39,43,46,49,54,60,65,67,68,74,76,81,87,88,90,...].
which are numbers that are not the sum of two generalized pentagonal numbers.
-
/* Subroutine used in PARI programs below: */
{A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
-
{a(n)=polcoeff(exp(sum(k=1, n, -sigma(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n, 1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n)), n)}
A204383
G.f.: Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^3 where A002203(n) is the companion Pell numbers.
Original entry on oeis.org
1, -6, -9, 70, 90, 0, -1411, -1722, 0, 490, 60534, 75222, 49, -21510, 0, -6067754, -7542180, 0, 2156110, 0, 81, 1420032740, 1764323886, 0, -504516870, -8118, 0, -50196874, -783087782910, -973096740630, -121, 278263575996, 0, 0, 27685627830, 0, 1024173639305948
Offset: 0
G.f.: A(x) = 1 - 6*x - 9*x^2 + 70*x^3 + 90*x^4 - 1411*x^6 - 1722*x^7 +...
-log(A(x))/3 = 1*2*x + 3*6*x^2/2 + 4*14*x^3/3 + 7*34*x^4/4 + 6*82*x^5/5 + 12*198*x^6/6 +...+ sigma(n)*A002203(n)*x^n/n +...
The g.f. equals the product:
A(x) = (1-2*x-x^2)^3 * (1-6*x^2+x^4)^3 * (1-14*x^3-x^6)^3 * (1-34*x^4+x^8)^3 * (1-82*x^5-x^10)^3 * (1-198*x^6+x^12)^3 *...* (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^3 *...
Positions of zeros form A020757:
[5,8,14,17,19,23,26,32,33,35,40,41,44,47,50,52,53,54,59,62,63,...].
-
/* Subroutine used in PARI programs below: */
{A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
-
{a(n)=polcoeff(exp(sum(k=1, n, -3*sigma(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n, 1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^3, n)}
A205508
a(n) = Pell(n) * A004018(n) for n>=1 with a(0)=1, where A004018(n) is the number of ways of writing n as a sum of 2 squares.
Original entry on oeis.org
1, 4, 8, 0, 48, 232, 0, 0, 1632, 3940, 19024, 0, 0, 267688, 0, 0, 1883328, 9093512, 10976840, 0, 127955424, 0, 0, 0, 0, 15740857452, 25334527696, 0, 0, 356483857192, 0, 0, 2508054264192, 0, 29236023007504, 0, 85200014758320, 411382062287848, 0, 0, 5788584895037376
Offset: 0
G.f.: A(x) = 1 + 4*x + 8*x^2 + 48*x^4 + 232*x^5 + 1632*x^8 + 3940*x^9 + 19024*x^10 +...
Compare the g.f to the square of the Jacobi theta_3 series:
theta_3(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 + 4*x^9 + 8*x^10 +...+ A004018(n)*x^n +...
The g.f. equals the sum:
A(x) = 1 + 4*x/(1-2*x-x^2) - 4*5*x^3/(1-14*x^3-x^6) + 4*29*x^5/(1-82*x^5-x^10) - 4*169*x^7/(1-478*x^7-x^14) + 4*985*x^9/(1-2786*x^9-x^18) - 4*5741*x^11/(1-16238*x^11-x^22) + 4*33461*x^13/(1-94642*x^13-x^26) - 4*195025*x^15/(1-551614*x^15-x^30) +...
which involves odd-indexed Pell and companion Pell numbers.
-
{Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
{A002203(n)=Pell(n-1)+Pell(n+1)}
{a(n)=polcoeff((1+4*sum(m=0,n+1,(-1)^m*Pell(2*m+1)*x^(2*m+1)/(1-A002203(2*m+1)*x^(2*m+1)-x^(4*m+2)+x*O(x^n))))^(1/1),n)}
Showing 1-3 of 3 results.
Comments