cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204386 Expansion of (theta_2(q)^8 + 4 * theta_2(q^2)^8) / 256 in powers of q^2.

Original entry on oeis.org

1, 12, 28, 96, 126, 336, 344, 768, 757, 1512, 1332, 2688, 2198, 4128, 3528, 6144, 4914, 9084, 6860, 12096, 9632, 15984, 12168, 21504, 15751, 26376, 20440, 33024, 24390, 42336, 29792, 49152, 37296, 58968, 43344, 72672, 50654, 82320, 61544, 96768
Offset: 1

Views

Author

Michael Somos, Jan 15 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			x + 12*x^2 + 28*x^3 + 96*x^4 + 126*x^5 + 336*x^6 + 344*x^7 + 768*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[(EllipticTheta[2, 0, q^(1/2)]^8 + 4*EllipticTheta[2, 0, q]^8)/256, {q, 0, n}];  Table[a[n], {n,1,50}] (* G. C. Greubel, Apr 13 2018 *)
    CoefficientList[Series[(EllipticTheta[2,0,q^(1/2)]^8 +4*EllipticTheta[2, 0, q]^8)/ 256, {q, 0, 50}], q] (* Vaclav Kotesovec, Apr 13 2018 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%2, sigma( n, 3), 12 * sumdiv( n/2, d, (n/2/d%2) * d^3)))}
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^8 + 4 * x * (eta(x^4 + A)^2 / eta(x^2 + A))^8, n))}

Formula

Expansion of x * psi(x)^8 + 4 * x^2 * psi(x^2)^8 in powers of x where psi() is a Ramanujan theta function.
Expansion of (eta(q^2)^2 / eta(q))^8 + 4 * (eta(q^4)^2 / eta(q^2))^8 in powers of q.
a(n) is multiplicative with a(2^e) = 3/2 * 8^e if e>0, a(p^e) = ((p^3) ^ (e+1) - 1) / (p^3 - 1).
a(2*n + 1) = A045823(n). a(2*n) = 12 * A007331(n).
Convolution of this sequence with A004018 is A050468.
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 + 1/2^(s-2)) * (1 - 1/2^s) * zeta(s-3) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^4, where c = 5*Pi^4/1536 = 0.317086... . (End)