A204465 Number of n-element subsets that can be chosen from {1,2,...,9*n} having element sum n*(9*n+1)/2.
1, 1, 9, 85, 1143, 17053, 276373, 4721127, 83916031, 1537408202, 28851490163, 552095787772, 10736758952835, 211657839534446, 4221164530621965, 85031286025167082, 1727896040082882283, 35382865902724442331, 729502230296220422918, 15132164184348997874504
Offset: 0
Keywords
Examples
a(2) = 9 because there are 9 2-element subsets that can be chosen from {1,2,...,18} having element sum 19: {1,18}, {2,17}, {3,16}, {4,15}, {5,14}, {6,13}, {7,12}, {8,11}, {9,10}.
Crossrefs
Row n=9 of A204459.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(i
t*(2*i-t+1)/2, 0, `if`(n=0, 1, b(n, i-1, t) +`if`(n b(n*(9*n+1)/2, 9*n, n): seq(a(n), n=0..20); -
Mathematica
b[n_, i_, t_] /; i
t(2i-t+1)/2 = 0; b[0, , ] = 1; b[n_, i_, t_] := b[n, i, t] = b[n, i-1, t] + If[nJean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Comments