cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204533 Triangle T(n,k), read by rows, given by (0, 1, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 8, 7, 3, 1, 0, 21, 22, 12, 4, 1, 0, 55, 67, 43, 18, 5, 1, 0, 144, 200, 147, 72, 25, 6, 1, 0, 377, 588, 486, 271, 110, 33, 7, 1, 0, 987, 1708, 1566, 976, 450, 158, 42, 8, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 16 2012

Keywords

Comments

Riordan array (1, x*(1-x)^2/(1-3*x+x^2)).
Antidiagonal sums: see A052946.

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   3,   2,   1;
  0,   8,   7,   3,  1;
  0,  21,  22,  12,  4,  1;
  0,  55,  67,  43, 18,  5, 1;
  0, 144, 200, 147, 72, 25, 6, 1;
		

Crossrefs

Cf. diagonals: A000007, A088305, A000012, A001477, A055998.

Programs

  • Mathematica
    Table[Sum[Binomial[k, m - 1] Binomial[n - 2 m + k, n - k - 1], {k, 0, n - 1}] + Boole[n == m == 0], {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Sep 26 2018 *)
  • Maxima
    T(n,m):= if n=0 and m=0 then 1 else sum(binomial(k,m-1)*binomial(n-2*m+k,n-k-1),k,0,n-1); /* Vladimir Kruchinin, Sep 27 2018 */
    
  • PARI
    T(n,k) = if ((n==0) && (k==0), 1, sum(i=0, n-1, binomial(i,k-1)*binomial(n-2*k+i,n-i-1))); \\ Michel Marcus, Sep 27 2018

Formula

Sum_{k=0..n} T(n,k) = A204200(n+1).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) + T(n-3,k-1) - T(n-2,k) - 2*T(n-2,k-1).
G.f.: (-1 + 3*x - x^2)/(-1 + 3*x - x^2 + x*y - 2*x^2*y + x^3*y). - R. J. Mathar, Aug 11 2015
T(n,m) = Sum_{k=0..n-1} C(k,m-1)*C(n-2*m+k,n-k-1), T(0,0)=1. - Vladimir Kruchinin, Sep 27 2018