cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204592 Primes p such that (p+1)/2, (p+2)/3, (p+3)/4 and (p+4)/5 are also prime.

Original entry on oeis.org

19441, 266401, 423481, 539401, 600601, 663601, 908041, 1113961, 1338241, 1483561, 1657441, 1673401, 2578801, 3109681, 3150841, 3336601, 3613681, 4112761, 4160641, 4798081, 5114881, 5412961, 5516281, 5590201, 5839681, 6078361, 7660801, 8628481, 9362641, 9388801, 9584401, 9733081
Offset: 1

Views

Author

M. F. Hasler, Feb 26 2012

Keywords

Comments

Equivalently, primes p in A163573 such that p+4 is a semiprime. (Since all p in A163573 are of the form p=120k+1, p+4 is necessarily a multiple of 5. The other prime factor is then (p+4)/5 = 24k+1.)

Programs

  • Mathematica
    Select[Prime[Range[700000]],AllTrue[{(#+1)/2,(#+2)/3,(#+3)/4,(#+4)/5},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 05 2017 *)
  • PARI
    {my(p=1); until(, isprime(p+=120) || next; for( j=2,5, isprime(p\j+1) || next(2)); print1(p","))}
    
  • PARI
    forprime(p=2,1e7,if(p%120==1&&isprime((p+1)/2)&&isprime((p+2)/3)&& isprime((p+3)/4)&&isprime((p+4)/5),print1(p", "))) \\ Charles R Greathouse IV, Feb 26 2012

Formula

A204592 = A163573 intersect A136061.