cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204621 Triangle read by rows: coordinator triangle for lattice A*_n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 16, 6, 1, 1, 7, 22, 22, 7, 1, 1, 8, 29, 64, 29, 8, 1, 1, 9, 37, 93, 93, 37, 9, 1, 1, 10, 46, 130, 256, 130, 46, 10, 1, 1, 11, 56, 176, 386, 386, 176, 56, 11, 1, 1, 12, 67, 232, 562, 1024, 562, 232, 67, 12, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 17 2012

Keywords

Examples

			Triangle begins:
                   1
                1    1
              1    4    1
            1    5    5    1
          1    6    16    6    1
        1    7    22    22    7    1
      1    8    29    64    29    8    1
    1    9    37    93    93    37    9    1
  1    10    46    130    256    130    46    10    1
1     11    56    176    386    386    176    56    11    1
...
		

Crossrefs

The triangle for Z^n is A007318, A_n is A008459, D_n is A108558, D*_n is A008518.
T(2n,n) gives A000302.

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Sum([0..Minimum(k,n-k)],i->Binomial(n+1,i))))); # Muniru A Asiru, Dec 14 2018
  • Mathematica
    T[n_, k_] := Sum[Binomial[n+1, i] , {i, 0, Min[k, n-k]}]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* Amiram Eldar, Dec 14 2018 *)

Formula

T(n, k) = Sum_{i=0..min(k,n-k)} binomial(n+1,i). [Wang and Yu, Theorem 4.1] - Eric M. Schmidt, Dec 07 2017