A204621 Triangle read by rows: coordinator triangle for lattice A*_n.
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 16, 6, 1, 1, 7, 22, 22, 7, 1, 1, 8, 29, 64, 29, 8, 1, 1, 9, 37, 93, 93, 37, 9, 1, 1, 10, 46, 130, 256, 130, 46, 10, 1, 1, 11, 56, 176, 386, 386, 176, 56, 11, 1, 1, 12, 67, 232, 562, 1024, 562, 232, 67, 12, 1
Offset: 0
Examples
Triangle begins: 1 1 1 1 4 1 1 5 5 1 1 6 16 6 1 1 7 22 22 7 1 1 8 29 64 29 8 1 1 9 37 93 93 37 9 1 1 10 46 130 256 130 46 10 1 1 11 56 176 386 386 176 56 11 1 ...
Links
- Muniru A Asiru, Rows n=0..100 of triangle, flattened
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A 453 (1997), 2369-2389.
- Hidefumi Ohsugi, Akiyoshi Tsuchiya, The h*-polynomials of locally anti-blocking lattice polytopes and their gamma-positivity, arXiv:1906.04719 [math.CO], 2019.
- Charles M. Wang, Josephine Yu, Toric h-vectors and Chow Betti Numbers of Dual Hypersimplices, arXiv:1707.04581 [math.CO], 2017.
Crossrefs
Programs
-
GAP
Flat(List([0..10],n->List([0..n],k->Sum([0..Minimum(k,n-k)],i->Binomial(n+1,i))))); # Muniru A Asiru, Dec 14 2018
-
Mathematica
T[n_, k_] := Sum[Binomial[n+1, i] , {i, 0, Min[k, n-k]}]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* Amiram Eldar, Dec 14 2018 *)
Formula
T(n, k) = Sum_{i=0..min(k,n-k)} binomial(n+1,i). [Wang and Yu, Theorem 4.1] - Eric M. Schmidt, Dec 07 2017