cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A225532 Triangle T(n, k) = abs(A225483(n/2, k)) if (n mod 2 = 0), otherwise abs(A225482((n-1)/2, k) - A225483((n-1)/2, k-1)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 26, 1, 1, 27, 27, 1, 1, 120, 1192, 120, 1, 1, 121, 1312, 1312, 121, 1, 1, 502, 14609, 88736, 14609, 502, 1, 1, 503, 15111, 103345, 103345, 15111, 503, 1, 1, 2036, 152638, 2205524, 9890752, 2205524, 152638, 2036, 1, 1, 2037, 154674, 2358162, 12096276, 12096276, 2358162, 154674, 2037, 1
Offset: 0

Views

Author

Roger L. Bagula, May 09 2013

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,  26,     1;
  1,  27,    27,      1;
  1, 120,  1192,    120,      1;
  1, 121,  1312,   1312,    121,     1;
  1, 502, 14609,  88736,  14609,   502,   1;
  1, 503, 15111, 103345, 103345, 15111, 503, 1;
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    Needs["Combinatorica`"];
    p[n_, x_]:= p[n,x]= Sum[If[i==Floor[n/2] && Mod[n, 2]==0, 0, If[i<=Floor[n/2], (-1)^i*Eulerian[n+1,i]*x^i, (-1)^(n-i+1)*Eulerian[n+1,i]*x^i]], {i,0,n}]/(1 - x^2);
    q[n_, x_]= If[Mod[n,2]==0, (1-x)*p[n/2,x], p[(n+1)/2,x]];
    Table[Abs[CoefficientList[q[(4*n +(-1)^n +5)/2, x], x]], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 29 2022 *)
    (* Second program *)
    A008292[n_, k_]:= A008292[n, k]= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}];
    f[n_, k_]:= f[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], f[n,k-1] + (-1)^k*A008292[n+2,k+1], f[n,n-k]]]; (* f=A159041 *)
    A225483[n_, k_]:= Sum[(-1)^(k-j)*f[2*n+1,j], {j,0,k}];
    T[n_, k_]:= If[Mod[n,2]==0, A225483[n/2, k], A225483[(n-1)/2, k] - A225483[(n - 1)/2, k-1] ]//Abs;
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 29 2022 *)
  • Sage
    def A008292(n, k): return sum( (-1)^j*(k-j)^n*binomial(n+1, j) for j in (0..k) )
    @CachedFunction
    def f(n, k): # A159041
        if (k==0 or k==n): return 1
        elif (k <= (n//2)): return f(n, k-1) + (-1)^k*A008292(n+2, k+1)
        else: return f(n, n-k)
    def A225483(n,k): return sum( (-1)^(k-j)*f(2*n+1,j) for j in (0..k) )
    @CachedFunction
    def A225532(n,k):
        if (n%2==0): return abs(A225483(n/2, k))
        else: return abs( A225483((n-1)/2, k) - A225483((n-1)/2, k-1) )
    flatten([[A225532(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 29 2022

Formula

From G. C. Greubel, Mar 29 2022: (Start)
T(n, k) = abs(A225483(n/2, k)) if (n mod 2 = 0), otherwise abs(A225482((n-1)/2, k) - A225483((n-1)/2, k-1)).
T(n, n-k) = T(n, k). (End)

Extensions

Edited by G. C. Greubel, Mar 29 2022
Showing 1-1 of 1 results.