A205599 Maximum period of the totalistic 2-color radius 2 cellular automaton in a cyclic universe of width n.
1, 2, 2, 2, 1, 2, 14, 4, 22, 2, 121, 5, 143, 14, 55, 26, 17, 22, 171, 180, 189, 198, 207
Offset: 1
Examples
For n=7, the initial state 0, 0, 1, 1, 0, 1, 0 has evolution: 0011010 1110010 1000110 1011100 1010001 0010111 0110100 1100101 0001101 0111001 0100011 0101110 1101000 1001011 0011010 Which has period 14, the highest possible. Thus a(7)=14.
References
- Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, 2002, p. 255-260, p. 281-285
Programs
-
Mathematica
f[list_] := -Subtract @@ Flatten[Map[Position[#, #[[-1]]] &, NestWhileList[CellularAutomaton[{20, {2, 1}, 2}], list, Unequal, All], {0}]]; a[n_] := Max[Table[f[IntegerDigits[i, 2, n]], {i, 0, 2^n - 1}]]; Table[a[n], {n, 1, 12}]
Comments